STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY SEAC-2015/CR-375/TC-2 Environment department, Room No. 217, 2nd floor, Mantralaya Annexe, Mumbai- 400 032. Date: 18 July, 2016. To, M/s. IPCA Laboratories Pvt. Ltd. C-89 to C-95, MIDC Industrial Area, Dist. Raigad- 402309. Subject: Environment clearance for proposed expansion of production capacity of Active Pharmaceutical Ingredient & Bulk Drug at the existing plantat plot No.C-89 to C-95,MIDC, Mahad, Dist. Raigad by M/s.IPCA Laboratories Pvt.Ltd Sir, This has reference to your communication on the above mentioned subject. The proposal was considered as per the EIA Notification, 2006, by the State Level Expert Appraisal Committee-I, Maharashtra in its 117th meeting and decided to recommend the project for prior environmental clearance to SEIAA. Information submitted by you has been considered by State Level Environment Impact Assessment Authority in its 99th meeting. 2. It is noted that the proposal is considered by SEAC-I under screening category 5(f) B1 as per EIA Notification 2006. ## Brief Information of the project submitted by Project Proponent is as: | 1 | Name of the Project | Proposed Enhancement in Production Capacity of Active Pharmaceutical Ingredient (API) (From 60 TPA to 86 TPA) & Bulk Drug Intermediate Products (From 647.88 TPA to 1904 TPA) within Existing Plant Premises at Plot No. C – 89 to C – 95, MIDC Mahad, Tehsil Mahad, District Raigad (Maharashtra) by M/s. Ipca Laboratories Limited formally known as Exon Laboratories Pvt. Ltd | | | | | | |---|---|---|--|---|--|--|--| | 2 | Name, address, e-mail & contact number of Proponent | Nam
e | Mr. Paresh
Desai
(GM –
Operation) | Manoj Kumar Mittal Vice President EHS (Corporate) | | | | | | | Address | Ipca Laboratories Ltd. C - 89 to C - 95 MIDC Area, MIDC Mahad, | Ipca Laboratories Ltd. Ratlam (MP) | | | | | | | | Dist Raigad
(MH) | | | | | |----|--|--|---|---|---|--|--| | | 、 、 | Tele
pho
ne
no | 02145 -232524,
232058 | +91 7412 27 8321 | | | | | | | Mob
ile
no. | 09699469655 | +91 93000 3626 | | | | | | | Ema
il ID | paresh.desai@ip
ca.com | manojkumar.mi | ttal@ipca.com | | | | 3 | Name, address, e-mail & contact number of Consultant | Name: J. M. EnviroNet Pvt. Ltd. Address: 1st& 2nd Floor, S. C. O. 16, Sector 10-A, Pace City, Gurgaon- Haryana Telephone number: 0124-4141926 Mobile number: 09910494521 Email ID: jmenviron@hotmail.com | | | | | | | 4 | Accreditation of consultant (NABET Accreditation) | J.M. EnviroNet Pvt. Ltd. is listed at serial no. "89" of the List of Accredited EIA Consultant Organization displayed on MoEFCC website (http://www.qcin.org/nabet/EIA/documents/Accredited%20con sultants.pdf), updated as on 5 th Nov., 2015. | | | | | | | 5 | New Project / Expansion in existing project/ Modernization/ Diversification in exiting project | | nsion project | | | | | | 6 | If expansion/ Diversification, whether environmental clearance has been obtained for existing project (If yes, enclose a copy with compliance table) | cleara
in 19
Clear | 89, now we are her | of projects. This peby applying for latification dated 14 | lant was established | | | | 7 | Activity schedule in the EIA Notification | time | | falls in Category | and as amended from 'B', S. No 5(f) (4) ate). | | | | 8 | Area Details | •Tota | Il plot area (sq. m.)
It up area (Sq. m.): | : 26588 sq. m. (6. | | | | | 9 | Name of the Notified | | C Industrial Area, I | | | | | | | | | | | | | | | 10 | Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the | | Meeting of SEAC- | I, Maharashtra on | dated 26.03.2015 | | | | 10 | Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the meeting) | 98 th]
(Age | nda Item No. 14) | | dated 26.03.2015 | | | | | Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the | 98 th 1
(Age
Tota | | | | | | | | Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the meeting) Estimated capital cost of the Project (including cost for land, building, plant | 98 th 1
(Age
Tota | nda Item No. 14)
I cost of Project: Rs | | | | | | | Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the meeting) Estimated capital cost of the Project (including cost | 98 th 1
(Age
Tota
S.
1
2 | nda Item No. 14) I cost of Project: Rs No. Particulars Land Building | s. 3895.38 Lacs | Amount (in Lakhs 35.00 1030.38 | | | | | Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the meeting) Estimated capital cost of the Project (including cost for land, building, plant | 98 th] (Age Tota S. 1 2 3 | nda Item No. 14) I cost of Project: Rs No. Particulars Land Building Plant & Mac | s. 3895.38 Lacs | Amount (in Lakhs) 35.00 1030.38 2005.67 | | | | | Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the meeting) Estimated capital cost of the Project (including cost for land, building, plant | 98 th 1
(Age
Tota
S.
1
2 | nda Item No. 14) I cost of Project: Rs No. Particulars Land Building Plant & Mac Computer M | s. 3895.38 Lacs | Amount (in Lakhs 35.00 1030.38 | | | žų. | | | 6 | | | ion Cont. | Equip. | 87.00 | |----|--|--------------------------|--|--------------------------------------|--|---|--| | | | 7 | | iture & F | | | 19.61 | | | | 8 | | trical Fitt | | | 119.53 | | | | | Offi | | 15.78 | | | | | | 10 | V - benefit in the second of t | oratory E | quip. | | 122.17 | | | | | Tota | | | | 3895.38 | | 12 | Location details of the project: | Long
Loca
Mah | tude - 18°06
gitude - 73°
ation - Plot
ad, District
ation above | 29'07.10'
No. C - 8
: Raigad | 'E to 73°2'
9 to C – 9:
(Maharash | 9'15.05"E
5, MIDC :
tra). | Mahad, Tehsil: | | 13 | Distance from Protected Areas / Critically Polluted areas / Eco-sensitive areas / inter-State boundaries | No I | | reas/ Crit | ically Poll | uted Área | s /Eco-sensitive | | 14 | Raw materials (including | 111 | Para Hydro | xv Phenv | Acetamic | le (PHPA | | | | process chemicals, catalysts & additives). | S.
N
o. | Raw
material
Name | Existin g Month ly Qty. (MT/ Month) | Additio
nal
Monthl
y Qty.
(MT/M
onth) | Total
Monthl
y Qty.
(MT/
Month | Source & Mode of transport | | | | 1 | Para Hydroxy Aceto Phenone (PHAP) | 40.5 | 25.19 | 65.69 | BASF South
East Asia PTE
Ltd/Container | | | | 2 | Sulphur | 9.99 | 6.20 | 16.19 |
Indian Agro Chem Industries Pvt. Ltd/Lorry | | | | 3 | NH3
Gas | 10.125 | 6.28 | 16.325 | Jaysons Ammonia & Chemicals Pvt. Ltd./Lorry | | | 4 | Isopropy
l
Alcohol | 77.22 | 47.96 | 125.18 | Deepak Fertilizers & Petrochemicals Corporation Ltd./Tanker | | | | 5 | Toluene | 56.7 | 35.21 | 91.91 | Exxon mobile
(Imported)/Tank
er | | | | | 6 | Carbon | 2.160 | 1,34 | 3.5 | Universal
Carbons
(India)/Lorry | | | | 7 | Acetic
Acid | 0.297 | 0.184 | 0.481 | Thana Acid & Chemical Co./Lorry | | | | 8 | Hyflow | 0.108 | 0.0670 | 0.175 | Silicon Products (P) | · Cu | | | | | | Associates/Lorr y | |------|--|----------|----------|---------|--| | 9 | Hydrose | 0.162 | 0.1006 | 0.2626 | Rajeshwari
Dye-Chem. P.
Ltd/Lorry | | 2] H | lydroxy No | val Diam | ine (HNI | DA) | | | 1 | Acetyl Butyro Lactone (ABL) | 7.5 | 24.05 | 31.55 | Linhai Realsun
Chemical CO.,
Ltd./Lorry | | 2 | NA Salt | 1.8 | 5.77 | 7.57 | Tata Chem/
Lorry | | 3 | Hydroch
loric
Acid
(HCl) | 25.8 | 82.73 | 108.53 | GHCL,
Gujarat/Tanker | | 4 | Para Toluene Sulphoni c Acid (PTSA) | 0.60 | 1.92 | 111.05 | D.K.
Pharmachem
Pvt. Ltd./Lorry | | 5 | Mono Ethylene Glycol (MEG) | 3.45 | 11.06 | 14.51 | Golden Dyechem(Farsa) / Lorry | | 6 | Cyclohe xane | 13.68 | 43.86 | 57.54 | International
Solvents &
Chemical Co./
Tanker | | 7 | Toluene | 25.8 | 82.73 | 108.53 | Exxon mobile
(Imported)/Tank
er | | 8 | Sodium
Iodide
(NAI) | 0.075 | 0.240 | 0.315 | Samrat
Pharmachem
Limited/Lorry | | 9 | Ehylene
Amino
Ethanol
(EAE) | 9.75 | 31.26 | 41.01 | Amines &
Plasticizers
Ltd./Lorry | | 10 | Caustic lye Methyle ne Dichlori de (MDC) | 19.8 | 63.49 | 83.29 | GHCL,
Gujarat/Tanke | | 11 | Raney
Nickel | 0.308 | 0.981 | 1.289 | Monarch Catalyst Pvt.Ltd.,/Lorry | | 12 | H2
Cylinder | | 721.51 | 946.51 | Super Industrial
Gases/Lorry | | 13 | N2 | 150 | 481 | 631 nos | Kokan Gases/ | TH. • 7. | | | Cylinder | Nos | | | Lorry | |---|------|---|--------------|-----------|-----------|---| | • | 14 | NH3 gas | 3.15 | 10.10 | 13.25 | Jaysons
Ammonia
/Lorry | | | 3]] | Thioephene – | - 2 – Alc | lehyde (T | 2A) | | | | 1 | Thiophene | 4.5 | NIL | 4.5 | Lianyungang,
China/Loory | | | 2 | Dimethyl
Farmamid
e | 4.5 | NIL | 4.5 | RCF/Lorry | | | 3 | Phosphoro
us
Oxichlorid
e | 9.36 | NIL | 9.36 | United
Phosphorous
/Lorry | | | 4 | Ethylene
Dichloride | 10.8 | NIL | 10.8 | Finolex,
Ratnagiri /Lorry | | | | Caustic
Lye | 20.25 | NIL | 20.25 | GHCL, Gujarat
/Tanker | | | | 2 Mercapto –
MBI) | · 5 Meho | xy Benzi | imidizole | | | | 1 | 4-
Methoxy-
2-nitro
aniline
(MNA) | 6.6 | 124.2 | 130.82 | LEO Tex
Industries/Lorry | | | 2 | Sodium
Hydrogen
Sulphide
(NaHS) | 11.55
6 | 218 | 229.556 | Eureka
Chemicals/Lorr
y | | | 3 | Carbon
Disulphide | 4.62 | 87 | 91.62 | Jinesh Chemicals Private Ltd/Lorry | | | 4 | 1-Octanol | 66
Ltrs | 1243 | 1309 | Spectrochem Pvt. ltd./ lorry | | | 5 | Methanol | 12.54 | 236.1 | 248.64 | Jupiter Dyechem Pvt. Ltd/ Tanker | | | 6 | Caustic
Flakes | 3.3 | 62.14 | 65.44 | GHCL, Gujarat/
Lorry | | | 7 | Activated
Carbon | 1.32 | 24.85 | 26.17 | Global
Adsorbents Pvt.
LTD.,/ Lorry | | | 8 | Hydrochlo
ric Acid | 3960
Ltrs | 74580 | 78540 | Manish Labchem Private Limited/ Tanker | | | 9 | Sodium
Hydrosulfi
de | 0.132 | 2.48 | 2.612 | Rajeshwari
Dye-chem. P.
Ltd /lorry | | | 1 | Ethyl | 6600 | 12429 | 130899 | Laxmi Organic | • | 0 | Acetate | Ltrs | 9 | | Industries Limited/ Tanker | |-------|------------------------------------|--------------|-------------|----------|--| | 67.00 | 3-Methyl Thi
MT2A) | oephene | : – 2 – Al | dehyde | | | 1 | Methyle
Thiophene | 4.25 | 0.0067
4 | 4.25674 | Zibo senbao
chem. China/
lorry | | 2 | Dimethyl
Farmamid
e | 4.016 | 0.0637
1 | 4.07971 | RCF/ Lorry | | 3 | Phosphoro
us
Oxychlori
de | 8. 33 | 0.0132 | 8.3432 | United
Phosphorous
/Lorry | | 4 | Ethylene
Dichloride | 8.28 | 0.0131 | 8.2931 | Finolex,
Ratnagiri /Lorry | | 5 | caustic lye | 20.45 | 0.0324
4 | 20.4824 | GHCL,
Gujarat/Tanker | | 6] | 6-Floro Tetra | Hydro | Quinolin | e (6FTQ) | | | 1 | 4 fluoro
Aniline | 6.6 | Nil | 6.6 | Aarti Industries
Ltd./Lorry | | 2 | Hydrochlo
ric Acid
(HCl) | 18.14
4 | Nil | 18.144 | GHCL ,Gujarat | | 3 | Crotonalde hyde | 4.44 | Nil | 4.44 | Godavari
Biorefineries
Ltd/Lorry | | 4 | Toluene | 12.38
4 | Nil | 12.384 | Exxon mobile
(Imported)
/Tankar | | 5 | Caustic lye | 15.98
4 | Nil | 15.984 | GHCL, Gujarat/
Tanker | | 6 | Catalyst | 0.002 | Nil | 0.002 | Hindustan Platinum Pvt. Ltd./Lorry | | 7 | H2 gas | 120
Nos | Nil | 120 Nos | Super Industrial
Gases/Lorry | | 8 | N2
cylinder | 20
Nos | Nil | 20 Nos | Kokan
Gases/Lorry | | 9 | Sodium
Bicarbonat
e | 0.040 | Nil | 0.040 | GHCL,
Gujarat/Lorry | | 7 | 4(2Methoxy | Ethyl) I | Phenol (1 | MEP) | | | 1 | 2 Phenyl
Ethanol | 10.00 | Nil | 10.00 | IPCA Lab Ltd.
Ratlam/Lorry | | 2 | Di methyl
Sulphide | 1.375 | Nil | 1.375 | Aarti Ind. /Lorry | | 3 | Tetra Butyl Ammoniu m | 0.129 | Nil | 0.129 | Dishman
Pharmaceutical
Lorry | | | Bromide | 70 AM | Marini K | | | |--------|-------------------------------|------------|----------|--------|---| | 4 | Caustic
Flakes | 13.12
5 | Nil | 13.125 | GHCL,
Gujarat/Lorry | | 5 | Sodium
Salt | 1.00 | Nil | 1.00 | GHCL, Gujarat/Lorry | | 6 | Nitric
Acid | 3.9 | Nil | 3.9 | Acid Industries /Lorry | | 7 | H2SO4 | 28.34
1 | Nil | 28.341 | DMC/Tanker | | 8 | Sodium
Bicarbonat
e | 0.558 | Nil | 0.558 | TATA Chem
/Lorry | | 9 | Toluene | 22.10 | Nil | 22.102 | Exxon Mobile (IMP)/Tanker | | 1
0 | Rany
Nickel
Catalyst | 0.020 | Nil | 0.020 | Monarch
Catalyst/Lorry | | 1
1 | Hydrogen | 0.225 | Nil | 0.225 | Super Ind
Gases,
Thane/Lorry | | 1
2 | Hyflow | 0.010 | Nil | 0.010 | Silicon Products (P) Associates/Lorr y | | 1
3 | Nitrogen | 0.050 | Nil | 0.050 | Kokan
Gases/Lorry | | 1
4 | Methanol | 7.98 | Nil | 7.98 | PCC Iran
(IMP)/Tanker | | 1
5 | Hydrose | 0.221 | Nil | 0.221 | Rajeshwari
Dye-Chem. P.
Ltd /Lorry | | 1
6 | sodium
Nitrite | 2.55 | Nil | 2.55 | Deepak
Nitrite/Lorry | | 8] | Etodolac | | | | | | 1 | 7 Ethyl
Tryptopho
l | 4.5 | 3.61 | 8.11 | Zhejiang Medicines & Health Products Imp.& Exp. Co. Ltd./ Container | | 2 | Methyl 3
Oxopentan
oate | 3.69 | 2.96 | 6.65 | Zhejiang Medicines & Health Products Imp.& Exp. Co. Ltd./ Container | | 3 | Methanol | 18.00 | 14.46 | 32.46 | PCC Iran
(INP)/Tanker | | 4 | Sulphuric
acid | 2.25 | 1.80 | 4.05 | Manish Lab
chem Private
Limited/Lorry | | 5 | Caustic flakes | 0.900 | 0.723 | 1.623 | GHCL,
Gujarat/Lorry | ...1 .4 | 6 | Hydrochlo ric Acid | 2.32 | 1.863 | 4.183 | GHCL, Gujarat/Tanker | |--------|---|-------------|-------|--------|--| | 9]] | Losarton Bas | e.c. | | 是的思想的 | | | 1 | Intermedia
te – I | 6.00 | 7.5 | 13.5 | Makers Lab
Ltd, Dombilval/
Lorry | | 2 | Toluene | 11.61 | 14.5 | 26.11 | Exxon Mobil (Imp)/ Tanker | | 3 | Sodium
Azide | 4.08 | 5.1 | 9.18 | Corvine chemicals & pharmaceuticals ltd./ Lorry | | 4 | N-Methyl
pynilidino
ne
Triethyl
Amine | 8.64 | 10.8 | 19.44 | Alkyl amines
chemicals ltd./
lorry | | 5 | Caustic
Soda
flakes | 3.6 | 4.5 | 8.1 | GHCL,
Gujarat/Lorry | | 6 | Carbon | 0.600 | 0.75 | 1.35 | M.M. Corporation /Lorry | | 7 | Hydrose | 0.600 | 0.75 | 1.35 | Rajeshwari
Dye-Chem. P.
Ltd /Lorry | | 8 | Sodium
Nitrite | 1.8 | 2.25 | 4.05 | Deepak Nitrite
Limited /Lorry | | 9 | HCl (CP) | 6.00 | 7.5 | 13.5 | Manish Labchem Private Limited/Tanker | | 1
0 | Hyflow | 0.060 | 0.075 | 0.135 | Silicon Product (P) Associates/ Lorry | | 1
1 | IPA | 4.68 | 5.85 | 10.53 | Deepak Fertilizers & Petrochemicals Corporation Ltd/ Tanker. | | 1 2 | N2 Gas | 45
 Nos | 56.25 | 101.25 | Kokan
Gases/Lorry | | 1 | 0] Methyl Ket
1,3
yclohexan
edione | 0.300 | Nil | 0.300 | Atul Ltd.
Valsad/ Lorry | | 2 | Phenyl
Hydrazine
HCL | 0.405 | Nil | 0.405 | Keminova
India/Lorry | | 3 | Methanol | 0.684 | Nil | 0.684 | PCC Iran
(Imp)/Tanker | | | | | *** ********************************* | an error in a company of the first feature. | Nederland year en bestelle en werde dat een bevel verstelle en be | |--------|--------------------------------------|--------------|--|---|---| | 4 | Caustic
Flakes | 0.137 | Nil | 0.137 | GHCL,
Gujarat/Lorry | | 5 | Acetic
Acid | 4500
Ltrs | Nil | 4500
Ltrs | Thana Acid & Chemical Co./ Lorry | | 6 | Zinc
Chloride | 4.56 | Nil | 4.56 | Vijay Chem
Services/ Lorry | | 7 | Acetone | 3.822 | Nil | 3.822 | ICC Chem
(Imp)/ Tanker | | 8 | Dimethyl sulphide | 0.294 | Nil | 0.294 | Aarti Industries
Ltd./ Lorry | | 9 | Toluene | 1.548 | Nil | 1.548 | Exxon mobil (Imp)/Tanker | | 1
0 | Phenyl
Hydrazone | 0.720 | Nil | 0.720 | Cheminova Ltd
Solapur/ Lorry | | 11 |] DSP | | | | | | 1 | Caustic
Soda
flakes | Nil | 1540
kg | 1540 kg | GHCL,
Gujarat/Lorry | | 2 | Bon Acid | Nil | 4000
kg | 4000 kg | Suzhou Untong
Chem China/
Lorry | | 3 | Paraformal -Dehyde | Nil | 530 kg | 530 kg | Ercros
Ind/Lorry | | 4 | Refined
Salt | Nil | 100 kg | 100 kg | GHCL/Lorry | | 12 |] THP | | | | | | 1 |
3 Methyl
Amino
Propyl
Amine | Nil | 3600
kg | 3600 kg | High Rice
Chem/ Lorry | | 2 | Acetoni-
Trile | Nil | 1959
kg | 1959 kg | Alkyl Amines/
Lorry | | 3 | Catalyst
Hariocat | Nil | 87300
kg | 87300
kg | Harium/ Lorry | | 4 | Methanol
Fresh (For
flushing) | Nil | 120 kg | 120 kg | PCC Iran (Imp)
/ Lorry | | 13 |] Losarton Po | otassium | | | | | 1 | Losartan
Base | Nil | 7400
kg | 7400 kg | Ipca Lab Ltd.
Mahad | | 2 | Methanol | Nil | 7400
kg | 7400 kg | PCC Iran (Imp)
Tanker | | 3 | Potassium
Hydroxide
flakes | Nil | 1125k
g | 1125kg | GHCL, Gujarat
Lorry | | 4 | Activated
Carbon
(Carbopol | Nil | 1200k | 1200kg | Global
Adsorbents Pvt
Ltd./Lorry | | | SC40) | 動類的人類的 | MISSERVICE CONTROL | | | . 14 1.4 | | | | kg | | USA/ Tanker | |----|--|--------|---------------------|-------------|---| | 6 | Hyflow
(Celite-
545) | Nil | 480 kg | 480 kg | Silicon Products
(P)
Associates/Lorr
y | | 7 | Sodium
Hydro
Sulphite
(Hydrose) | Nil | 90 kg | 90 kg | Rajeshwari
Dye-Chem. P.
Ltd /Lorry | | 8 | Methanol For Partial Cleaning | Nil | 750 kg | 750 kg | PCC Iran (Imp)/
Tanker | | 9 | Nitrogen
Gas | Nil | 150 no | 150 no | Kokan
Gases/Lorry | | 14 |] CHBP | | | | | | 1 | 4-Chloro
Benzoyl
Chloride | Nil | 2225
kg | 2225 kg | Nantong
Prime,China/Lo
rry | | 2 | Anisole | Nil | 1500
kg | 1500 kg | Mithila
Raysan/Lorry | | 3 | Anhy.Alu
minium
Chloride | Nil | 4900
Kg | 4900
Kg | GHCL, Gujarat/
Lorry | | 4 | Mono
Chloro
Benzene | Nil | 3750
kg | 3750 kg | Aarti/ Cromine
Organic /Lorry | | 5 | Caustic
Flakes | Nil | 540 kg | 540 kg | GHCL, Gujarat/
Lorry | | 6 | Conc.
HCL | Nil | 5430
kg | 5430 kg | GHCL, Gujarat/
Tanker | | 7 | Activated
Carbon
(BW 280) | Nil | 135 kg | 135 kg | Brilex Chem
/Lorry | | 8 | Hyflow | Nil | 335 kg | 335 kg | Silicon
Product/Lorry | | 15 |] Sulphametl | oxy Py | | | | | 1 | SCP
(PURE) | Nil | 1500
Kg | 2925
Kg | Jiangxi Long
,China/Lorry | | 2 | Methanol | Nil | 23400
Kg | 46800
Kg | PCC
 Iran(Imp)/Tanke
 r | | 3 | КОН | Nil | 3100k
g | 6200 kg | GHCL, Gujarat/
Lorry | | 4 | Activated
Carbon
(BW-280) | Nil | 165 _. kg | 330 kg | MM
Corporation/
Lorry | | 5 | Hyflow | Nil | 75 kg | 150 kg | Silicon Product/Lorry | | 6 | Acetic
Acid | Nil | 5215
Kg | 8700
Kg | Thana Acid /Lorry | | 7 | Activated | Nil | 65 kg | 130 kg | Brilix Chem | | | Carbon
(BW-280) | | | | /Lorry | |--------|--------------------------|--------|---------------|--------------|---| | 8 | Hyflow | Nil | 25 Kg | 52 Kg | Silicon
Product/Lorry | | 16 |] 5 NSA | | 4X66708618 | | | | 1 | Salycylic
acid | Nil | 42400
kg | 42400
kg | Siddharth Carbochem Products Ltd./ Lorry | | 2 | 58%
HN03 | Nil | 66780
kg | 66780
kg | Acid
Industries/Lorry | | 3 | Methanol | Nil | 15110
0 kg | 151100
kg | PCC
Iran(Imp)/Tanke
r | | 4 | Act.
Carbon
(NS55) | Nil | 424 kg | 424 kg | Universal Carbons (India)/Lorry | | 17 | Novaldiam | ine (N | DA) | | | | 1 | ABL | Nil | 30000
Kg | 30000
Kg | Zhejiang
Medicines &
Health Products
Imp.& Exp.
Co.Ltd./Lorry | | 2 | HCL | Nil | 68200
kg | 68200
kg | GHCL, Gujarat | | 3 | Nacl | Nil | 9000
Kg | 9000
Kg | GHCL, Gujarat | | 4 | Cyclohex
ane | Nil | 49680
Kg | 49680
Kg | International Solvents & Chemical Co /Tanker. | | 5 | MEG | Nil | 13800
Kg | 13800
Kg | Golden Dyechem/(Farsa) /Lorry | | 6 | PTSA | Nil | 240
Kg | 240 Kg | D.K.
Pharmachem
Pvt. Ltd./Lorry | | 7 | TEA | Nil | 750
Kg | 750 Kg | Balaji Amines
Limited/Lorry | | 8 | Toluene | Nil | 72000
Kg | 72000
Kg | Exxon Mobile (Imp) /Tanker | | 9 | DEA | Nil | 29340
Kg | 29340
Kg | Alkyl Amines /Lorry | | 1
0 | KI | Nil | 300
Kg | 300 Kg | Makers Lab /Lorry | | 1
1 | Caustic
flakes | Nil | 20580
Kg | 20580
Kg | GHCL, Gujarat/
Lorry | | 1
2 | МеоН | Nil | 72000
kg | 72000
kg | PCC Iran
(Imported)/Tank
er | | 1 | Raney | Nil | 1200 | 1200 | Monarch | | 3 | Nickel | | Kg | Kg | Catalyst Pvt. Ltd.,/Lorry | |--------|-------------------------|-----|-------------|-------------|--| | 1
4 | H2
Cylinder | Nil | 1020
No. | 1020
No. | Super Ind
Gases/Lorry | | 18 |] Flumequin | e | | | | | 1 | 6-FTQ | Nil | 4500
kg | 4500
kg | Exon Lab. | | 2 | EMME | Nil | 6300
Kg | 6300
Kg | Amines & Plasticizers, Dombivli | | 3 | Toluene | Nil | 6920
Kg | 6920
Kg | EXXON Mobile
(Imp) /Tanker | | 4 | PPA | Nil | 9450k
g | 9450k
g | GHCL, Gujarat | | 5 | Methanol | Nil | 20000
Kg | 20000
Kg | PCC Iran
(Imp)/Tanker | | 19 | 1 ROBO | | | | | | 1 | KDVA | Nil | 2400
kg | 2400
kg | Zhejiang
Medicines &
Health Products
Imp.& Exp. Co.
Ltd./Lorry | | 2 | Acetic
Acid | Nil | 2400
kg | 2400
kg | GHCL, Gujarat | | 3 | Acetic anhydrid e | Nil | 2400
kg | 2400
kg | Thomas baker,
Gujarat | | 4 | Nitric
Acid
(65%) | Nil | 2540
kg | 2540
kg | Acid Industries/
Lorry | | 5 | Oleum | Nil | 9600
kg | 9600
kg | DMC
/(Farsa)/Lorry | | 6 | Nitro-
Benzene | Nil | 3360
kg | 3360
kg | Urvashi chem.
Mumbai / Lorry | | 7 | Glycerol | Nil | 4800
kg | 4800
kg | Triveni
Aromatics /Lorry | | 8 | Caustic
lye | Nil | 1200
kg | 1200
kg | GHCL, Gujarat | | 9 | Ethyl
Acetate | Nil | 70000
kg | 70000
kg | Laxmi
organics/Tanker | | 1
0 | Methanol | Nil | 5000
kg | 5000
kg | PCC iran /Tanker | | 1 2 | Raney
Nickel | Nil | 200 kg | 200 kg | Monarch Catalyst
Pvt. Ltd./Lorry | | 1
3 | N2 gas | Nil | 2400
kg | 2400
kg | Kokan gas, Lorry | | 1
4 | | Nil | 4000
kg | 4000
kg | Super Ind. Gases. Lorry | | 2 | 0] CLP-II | | | | | | 1 | OCPAA | Nil | 1125
Kg | 1125
Kg | Zhejiang Medicines & | (i i | | | | | | Health Products Imp.& Exp. Co. Ltd./Lorry | |--------|---------------------------------------|----------|-------------|--------------|--| | 2 | EDC | Nil | 18000
kg | 18000
kg | Phenolex,
Ratnagiri/ Tanker | | 3 | Phosp.
Trichlori
de | Nil | 285 kg | 285 kg | Sandhya Chem,
Gujarat, Lorry | | 4 | Bromine | Nil | 2340
kg | 2340
kg | DMC chem.,
Lorry | | 5 | Methanol | Nil | 1125
Kg | 1125
Kg | PCC Iran, Tanker | | 6 | MDC | Nil | 2250
Kg | 2250
Kg | Gujrat Alkely,
tanker | | 7 | Sodium
Metabisu
Iphite | Nil | 570 kg | 570 kg | Megh mani,
Gujarat/ Lorry | | 8 | 2-
Thiophen
e
Ethylami
ne | Nil | 750
Kg | 750
Kg | Zhejiang Medicines & Health Products Imp.& Exp. Co. Ltd./Lorry | | 9 | Paraform aldehyde | Nil | 195 kg | 195 kg | Triveni
aromatics/ lorry | | 1
0 | DMF+H
Cl | Nil | 1005
kg | 1005
kg | DMC, Dombivli /
Lorry | | 1
2 | Sodium
carbonat
e | Nil | 1770
kg | 1770
kg | AR Entp,
Mumbai/ lorry | | 1
3 | Acetone | Nil | 9000
Kg | 9000 .
Kg | Amiriddhi,
Mumbai/ tanker | | 1
4 | H2SO4 | Nil | 405 kg | 405 kg | DMC, dombivli /
Lorry | | 21 |] TBCA | | | | | | 1 | MCA | Nil | 15000
Kg | 15000
Kg | Urvashi Chem ,
Mumbai/ Lorry | | 2 | E-
Butanol | Nil | 11700
Kg | 11700
Kg | Urvashi Chem ,
Mumbai/ Lorry | | 3 | Sulphuric
Acid | Nil | 4375
kg | 4375
kg | DMC, Domb/
lorry | | 4 | Soda Ash | Nil | 2500
kg | 2500
kg | Mazda chem. / lorry. | | 5 | MDC | Nil | 11250
kg | 11250
kg | Gujarat Alkely, /
Tanker | | 22 |] Di-Benzot | hiazepin | | | L - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | | 1 | 2-NDS | Nil | 3000
Kg | 3000
Kg | Mazda Chem,
Mumbai/ Lorry | | 2 | Raney
Nickel | Nil | 200 kg | 200 kg | Monarch catalyst
, Dombivli/ Lorry | | 3 | Methanol | Nil | 16000
kg | 16000
kg | PCC Iran/ Tanker | | | | | H2
cyllender | Nil | 30 | 0 kg | 300 k | | er Indus
es, / Lo | | | |----|-----------------------|---|--|------|---|------------------------|--|---------------|--|--|--| | | | 5 | N2 | Nil | 20 | 200 kg | | Kol | Kokan Gases/
Lorry | | | | | | 6 | MDC Nil | | 80
K | | 800
Kg | Ma | Madhu Chem/
Tanker | | | | | | 8 | PCF | Nil | 10 | 00 | 1000
Kg | | Uravashi Chem. /
Lorry. | | | | | | 9 | NAOH | Nil | 80 | 0 | 800
Kg | | arat All | cely, | | | | | 10 | Sodium carbonate | Nil | 70 | 0(| 700
Kg | AR | ENTP,
mbai/ lo | | | | | 15 Production details | 12 | N-
Hexane | Nil | 22 | 250 | 2250
kg | | stha che | | | | | | 13 | Acetone | Nil | 60 | 000 | 6000
Kg | | veni Ent | ip/ | | | | | 14 | Poly
Phosphor
ic acid | Ni | 1/1/ | 200 | 1200
kg | Sar | ndhya ch
mbai/ L | | | | 15 | | S.
N
o. | Product Nar | ne | Max.
Qty
MT/
month
(Existi
g as pe
conser | Qt
(E
as
n co | ax.
y TPA
xisting
per
nsent) | 基次的 化混合物经复合效应 | Delet
ed
produ
ction
Quant
ity
TPA | Total
Propo
sed
Produ
ction
TPA | | | | | | Para Hydro
Phenyl
Acetamide | ху | 27.50 | 33 | 0.00 | 270 . | 00 | 600.0
0 | | | | | 2 | Hydroxyno diamine (HNDA) | vaal | 2.08 | 24 | .96 | 155.0
4 | 00 | 180.0
0 | | | | | 3 | Thioephene - Aldehyde (T2A) | | 2.16 | 25 | .92 | 00.00 | 0.92 | 25.00 | | | | | 4 | 2-Mercapto-
5Methoxy
Benzimidizo
(MMBI) | | 0.42 | 42 5.04 | | 74.96 | 00 | 80.00 | | | | | 5 |
6-Methoxy
Amino
Quionoline
(ROBO) | | 0.25 | 3. | 00 | 00 | 00 | 00.00 | | | | 6 | 3-Methyl
Thioephene
2Aldehyde
(3MT2A | | 2.08 | 24 | 1.96 | 0.04 | 00 | 25.00 | | | | | | 7 | 6-Fluro Ter
Hydro
Quinoline | ta | 2.50 | 30 | 0 | 15 | 00 | 45.00 | | | | | | (6FTQ) | | | | | | |---|--|---|-------------------------------------|-------|--|---------------------|------------|---------------------| | | | 8 | MEP | 4.00 | 48.00 | 00 | 18.0 | 30.00 | | | | 9 | Etodolac | 3.00 | 36.00 | 36.00 | 00 | 72.00 | | | | 10 | Flumequine | 2.00 | 24.00 | 00 | 24.00 | 00.00 | | | | 11 | CLP- II | 0.30 | 3.6 | 00 | 3.6 | 00.00 | | | | 12 | Losarton Base | 5.00 | 60 | 240,0 | 00 | 300.0
0 | | | | 13 | 13 Methyl Keto 1.5 Indole | | 18.36 | 00 | 15.36 | 3.00 | | | | 14 | Di Benzo
Thiazepine | 1.17 | 14.04 | 00 | 14.04 | 00.00 | | | | 15 | T- Butyl
Chloro Acetate | 5.00 | 60.00 | 00 | 60.00 | 00.00 | | | | 16 | DSP | | | 50.00 | | 50.00 | | | | | THP | | | 50.00 | | 50.00 | | | | () () () () () () () () () () () (| Losarton
Potassium | - | | 50.00 | | 50.00 | | | | 19 | CHPB | | | 30.00 | 4.5 | 30.00 | | | | | Sulphamethox
y Pyrizine | | | 10.00 | | 10.00
200.0
0 | | | | 21 | 5 NSA | | | 200.0 | | | | | | 22 | Noveldamine | 7 | | 240.0 | - | 240.0
0 | | | | 23 | NND | | | 20.00 | | 20.00 | | | | 24 | CBT | - | | 15.00 | 3-31 | 15.00 | | | | 25 | HCS | | | 25.00 | | 25.00 | | | | Tot | al | 58.99 | 707.88 | 1241. 135.9
00 2 | 135.9
2 | 2050 | | | | BY | PRODUCTS | | | | | | | | | 23 | Spent Caustic
Lye 14% | - | 7 | 800
TPA | - | 800
TPA | | | | 24 | Spent Azide
Solution
(10-15%) | - | - | 1296
TPA | - | 1296
TPA | | | | 25 | Spent Sodium Sulphide Solution | - | - | 1344
TPA | | 1344
TPA | | 6 | Process details /
manufacturing details | S.
N
o. | Product | | Process Des | scription | | | | | | | Para Hydroxy
Phenyl Acetar | | The process involves Amidation reaction of PHAP in presence of Sulfur, Ammonia and IPA. After recovery of solvent and filter to get PHPA crude.Purification of PHPA Crude by using Acetic Acid, Carbon, and Hydrose get wet pure material which is to be | | | | n sansa sasa sana | 77 | | dried for PHPA Pure. | |----|--|---| | | Hydroxynovaaldia mine (HNDA) | The process involves conversion of ABL into Chloro Pentanone by using Hydrochloric Acid. Then Chloropentanone is converted into Ketal derivative by using Mono Ethylene Glycol & Para Toluene Sulphonic Acid. Then Ketal derivative is condensed with Ethyl Amino Ethanol to give condensed product which is deketalized in presence of Hydrochloric Acid followed by reductive Ammination with Ammonia Raney Nickel catalyst & Hydrogen to give HNDA Crude which is purified by fractional distillation. | | 3 | Thioephene – 2 –
Aldehyde (T2A) | Conversion of Thiophene to Thiophene-2-Aldehyde in presence of DMF and Phosphrous Oxichloride. Reaction mass quench in water and neutralize with caustic lye to get the T2A Crude which is to be further distil for Thiophene-2-Aldehyde pure material. | | 4 | 2-Mercapto-5
Methoxy
Benzimidizole
(MMBI) | This Process involves Reduction Of 4 MNA in presence of Sodium Hydrosulfide solution and followed by addition of 1 Octanol and CS2. Resulting MMBI Crude. Purification of MMBI in presence of D.M. Water, Sodium Hydroxide, and decolourise with carbon and precipitation with HCl, CP. Repeat the same process for further purification and precipitated with Ethyl Acetate. Dry the material to get MMBI pure. | | 5 | 6-Methoxy-8-
Amino Quionoline
(ROBO) | The reduction of Robo -2 to Robo -3 is carried out under pressure in ethyl acetate & in presence of catalyst Raney Nickel BY Using Hydrogen Gas. After hydrogenation filtration is carried out & Ethyl Acetate recovery is carried out. After recovery will get the organic mass as ROBO-3. | | 6 | 3-Methyl | Conversion of Thiophene to | 77**1**. | | Thioephene-
2Aldehyde
(3MT2A) | 3Methyl Thiophene-2-Aldehyde in presence of DMF and Phosphrous Oxichloride. Reaction mass quench in water and neutralize with caustic lye to get the 3MT2A Crude which is to be further distilled for 3Methyl Thiophene-2-Aldehyde pure material. | |----|--|---| | 7 | 6-Fluro Terta
Hydro Quinoline
(6FTQ) | 4-fluro Aniline on condensation with Croton aldehyde gives fluro quinoline. Fluro quinoline on reduction in presence of Palladium carbon gets 6-fluro tetrahydroquinoline crude. Which on fraction distillation gets 6-fluro tetra hydro quinoline pure | | 8 | MEP | This process involves methylation of 2 Phenyl Ethanol by using DMS gets 2 Methoxy Ethyl Benzene. 2 Methyoxy Ethyl Benzene further carried out nitration in presence of sulphuric acid and nitric acid with used Nitro compound. Reduction of Nitro compound by using Raney Nickel and hydrogen which gives Amino compound. Amino compound further carried out Diazotization and hydrolysis gives us MEP crude which is further fraction distilled gives MEP Pure. | | 9 | Etodolac | 7-Ethyl tryptophol on condensation with Methyl-3-oxopentanoate in Methanol in presence of Sulphuric acid as a catalyst gives Methyl ester of Etodolac (ETDE). ETDE on hydrolysis with alkaline water gives Etodolac. | | 10 | Flumequine | This process involves condensation of 6-FTQ with EMME 2 form acrylate further it is hydrolyzed in presence of water with polyphosphoric acid to produce crude flumequine which is further purified in methanol to from pure Flumequine | | | Clopidogrel (CLP-II) | This process involves Bromination of OCPAA in presence of EDC, Phosphorous Trichloride, bromine, Methanol, | | | | MDC and followed by washing of Sodium Meta Bi sulphite. Followed by EDC recovery to get CLP 1 – B. Condensation 2 Thiophene Ethylamine to CLP 1-T in presence of EDC, Paraformadehyde & mixture of DMF + HCL gives CLP 1 – T. Condensation of CLP 1-B & CLP-1 T in presenc of Sulfuric acid, acetone and EDC gives us CLP-II. | |----|------------------------|--| | 12 | Losarton Base | This process involves condensation reaction of Intermediate 1st to Losartan Base crude in presence of Toluene, Sodium Azide, Triethyl Amine HCl, and followed by Hydrolysis by using Caustic solution. Organic mass which contain losartan Base which is further decolorised by using carbon and further precipitated with HCl to get the losartan Base crude. Purification of Losartan Base crude is carried out by water as well as IPA followed by drying to get Losartan Base Pure material. | | 13 | Methyl Keto
Indole | This process involves condensation reaction of 1,3,Cyclohexane Dione and Phenyl Hydrazine Hydrochloride, Methanol, D.M.Water followed by filtration and wash with water till PH neutral and dry the material gets MKI crude. Fisher Indole synthesis of Phenyl Hydrazone is carried out in presence of Acetic Acid and Zinc Chloride. Methylation of Keto Indole to Methyl Keto Indole crude in presence of Acetone, NaOH flakes and DMS. Purification of MKI is carried out by using Toluene. | | 14 | Di Benzo
Thiazepine | 2-nitro-di-phenyl sulphide on reduction with hydrogen and raney nickel gives amino di phenyl sulphide (ADS). This amino di phenyl sulphide (ADS) on condensation with phenyl chloro formate gives phenyl amino di phenyl sulphide | | 15 | T-Butyl Chloro
Acetate | (PADS). This phenyl amino di phenyl sulphide on cyclisation with poly phosphoric acid gives Dibenzothiazepine. Sulfonation of t-Butanol in presence of Mono Chloro Acetic Acid & MDC followed by water washing and after distillation gets T-BUTYL CHLORO ACETATE. | |----|---|--| | 16 | DSP | Conversion of Bon Acid into Disodium Pamoate in presence of Caustic soda flakes, Para Formaldehyde. | | 17 | THP |
This process involves condensation of Methyl Amino Propyl Amine in presence of Acetonitrile and catalyst Hariocat to get THP (Tetra Hydro Peridine) | | 18 | Losarton
Potassium | Losartan Base dissolved in Methanol & KOH solution followed by charcolsation & crystallization in Acetone gives Losartan Potassium. | | 19 | 4-Chloro-4-
Hydroxybenzophe
none (CHBP) | 4-Chloro benzoyl chloride when reacts with anisole under friedel craft acylation condition gives CMBP, which on insitu demethylation with anhydrous aluminum chloride gives CHBP. | | 20 | Sulphamethoxypyr azine | The process for the synthesis of sulphamethoxy pyrazine is comprises of two steps, first being the coupling of 2,3-dichloro pyrazine with sulphanilamide in the presence of acid binding agent, to produce the intermediate 4-Amino-N-(3-chloro-pyrazinyl)benezene sulphonamide (SCP), which is further reacted with potassium hydroxide and methanol to give the final product Sulphamethoxypyrazine. | | 21 | 5-Nitro Salicylic
Acid
(5-NSA) | The synthesis of 5-NSA involves Nitration of salicylic acid in aqueous media, followed by purification in Aq. MEOH to isolate 3-NSA isomer which is further purified by MEOH to obtain 5-NSA pure. | | | | 22 | Novaldia
(NDA) | fi
is
s
A
to
N
c
F
C
T
t
t
a
a
a | The synthesis rom ABL in a converted to the synthesis and the converted to the converted to the hydrolysis and fination in ammonia, hy is as catalysis of the converted to the converted to the hydrolysis. It and fination in ammonia, hy is as catalysis of fractional | volves 5 steps to CP by addition of the color and colo | Eps. ABL Shoth stillation with d Surther CP L Ketal by yl amine. NK by group with onverted ctive and raney A prepared | |----|---------------------------------|--|--|--|--|--|--| | | Rain Water Harvesting (RWH) | • Size KLD • Loc • Size | and no. of the ation ati | Ground water of RWH tanked tan | (s) and quan
(s) – Near Ut
ind Quantity | tity – 35 X2
tility Buildi
→ Not con | ng
sidered | | 18 | Total Water Requirement | Total Fresh Use of Proce Boili Cool Othe | water recommend water - 4 of the water ess - 105 ong Water ing - 176 rs water for wate | quirement:
:75 KLPD & S
er:
KLPD
– 134 KLPD | Source: MID | | | | 19 | Storm water drainage | • Nat | ural water | r drainage patt
- 0.75 x 1.2 | ern – Towar | ds Kal rive | r | | 20 | Sewage generation and treatment | • Am | ount of se | ewage generat
atment for the
he STP (CMD | ion – 25 KL
sewage – Bi | iological tre | | | 21 | Effluent characteristic | Para (pH CO) | ameters
, BOD,
D etc)
D | Effluent star
(Pl mention
specific star
100 | ndard limit
industry | Propose d Limit 100 | MPCB
Consent
Yes | | | | PH | D | 250
5.5 to 9.0 | | 250
5.5 to
9.0 | | | 22 | ETP details | KLPI
Capa
& Ca
Amor
Amor
emery
at MI
Mem | D + 45 KLF
city of the I
pacity of M
unt of treate
unt of wate
gency or br
IDC, Mahae
bership of t | PD) ETP (CMD) IEE – 75 KL ed effluent re r send to the eakdown eff I area for fun the CETP (If | – 120 I PD (fo ecycled CETP luent w ther tre | CLPD (for low r high TDS / C (CMD): 153 K (CMD): In case will be sent to C eatment and discept if yes then a control of the co | TDS / COD) OD) KLPD e of extreme ETP located posal. attach the | | | |----
--|---|---|--|---|--|---|--|--| | 23 | Note on ETP technology to be used | The industrial waste water (Low COD effluent) will be sent to the double stage activated sludge process type effluent treatment plant followed by RO Plant for treatment and the treated water will be utilized within plant for Plant Utilities. Similarly High COD effluent along with RO Reject will be sent to solvent stripper and multi effect evaporator for treatment and treated effluent will be recycled back. TSDF Site for which unit got membership. | | | | | | | | | 24 | Disposal of the ETP | TSDI | F Site for w | hich unit go | t memb | ership. | | | | | 25 | sludge (If applicable) 25 Solid waste Management | S.
N | Source | | Qty
(TP
M) | Form (Sludge/Dry / Slurry etc.) | Compositi | | | | | | 1 | Raw Wate
Treatment | | 1 | | - | | | | | | 2 ETP
3 Process | | | 100 | (- | Organic
Organic | | | | | | 5 | Spent Cat
Oily Slud | | 8.33
0.20
8 | oil | Organic
Organic | | | | | | 6 | Others lik
waste, Wa
Specify) | e Battery
iste etc (Pl. | 10
Nos. | Dry | 5 | | | | | | mater and process | rials or hear
proposed prection, Stora
VTSDF-Tall
t are the pos-
imum recov-
ible users of
nical solid valued of dispo-
nazardous co-
fully handle
harge of the
e shall be se | vy metals the ecautionary age, Transpooja ssibilities of very & recyc f solid waste to TSI sal of solid whemicals and in a closed se chemicals | en proventation recover ling is less to the state of the system into the for land | and Disposal a
ry and recyclin
being/will be d
at Taloja or cer
le organic solv
i, thereby prev
e air. Finally H
d disposal or ir | isposal data it g of wastes? one. ment plants. ents are enting any lazardous | | | | 26 | Atmospheric Emissions
(Flue gas characteristics
SPM, SO2, NOx, CO, etc.) | Sr.
No. | | Source of
Emission
Boiler | | ion rate | | | | | 100574 | | 2 | SO ₂ | | Boiler | 1.31 | | | | |--|---|-----------------|------------------|---|--|--|------------------------------|------------------|-----------------------| | | | 3 | NOx | | Boiler | 3.8 | | | | | 27 | | Plant
& uni | | Stac
No. | kHeight
ground
(m) | level I | nternal
Diamete
Top)(m | r Ex | mp. of
haust Gases | | | | Boiler | | 1 | 30.00 | | 0.75 M | | 0 Degree
ntigrade | | | Existing and proposed | DG se | ·t | 1/2/2/2 | 8.75 | |).27 M | | | | | activity). Please indicate the specific section to which the stack is | NH ₃ | ber & | 1 | 19.0 | | 00 MM | f Ar | nbient | | attached. e.g.: Process section, D.G. Set, Boiler, Power Plant, incinerator etc. Emission rate (kg/hr.) for each pollutant (SPM, SO2, NOx etc. should be specified | | lp. | ollutant | | Emiss | on Stand | ardPror | oosed Limit | MPCB Con | | 28 | Emission Standard | | | | tc)Limit | | | /Nm³) | (mg/Nm3) | | | | | PM/TPI | | | 150 mg/Nm ³ | | mg/Nm³ | 150 mg/Nm | | | | S |)2 | | 278 kg | | 278 | kg/d | 278 kg/d | | | | H | CL | | 35 mg | /Nm³ | 35 n | ng/Nm³ | 35 mg/Nm ³ | | | | N | H3 | | 50 PP | | 50 F | PPM | 50 PPM | | 29 | Ambient Air Quality Data | | 110
12.5
2 | Star
100
60 µ
80 µ
80 µ | nissible idard µg/m3 µg/m3 µg/m3 µg/m3 | Proposed
(in μg/m
89.9
42.3
12.2
25.7 | | | Remarks | | 100 | | CC | | 4 με | z/m3 | 0.72 | | | | | 30 Details of Fuel to be used: | S
r.
N
o | Fuel | | Daily
Consump
(TPD/KI
Existing | .D) | Calo
rific
valu
e
(Kca
ls
/kg) | % Ash | %
Sulph
ur | | | | | $\frac{1}{2}$ | Napl | nt | | - | | | | | | | | ha | | | | | | | | | | 3 | HSE |) | 50 Lit/d | 50
Lit/d | 102
70 | 0.02% | < 1% | | | | 4 | Fuel
Oil | | 2.4 KL/I | | 100
00 | 0.1 % | 3.5 % | | | | 5 | Coal | | 15.0
MT/D | Addit ional 5.0 MT/ | 560
0 to
620
0 | 15 to 20 | % | | | | 6 | Lignite | | | | | | | |----|--|---|--|-----------------|----------------------------------|------------------------|----------|-------------------------|------------| | | * * * | 7 | Other (Pl. specify | | | | | | | | | | ** \$40 CM / 2 SA \$40 A | rce of fue
le of tran | | William St. 2007 Chile | | site: Rs | , Road | | | 31 | Energy | Power supply: Existing power requirement: 1220 KVA Proposed power requirement: 1000 KVA Total – 2220 KVA Source - Maharashtra State Electricity Development Corporation Ltd. (MSEDCL) DG sets: Number and capacity DG sets to be used (existing and proposed) Existing – 590 KVA & proposed - 610 KVA Details of the
non-conventional renewable energy proposed to be used: Nil | | | | | | | | | 32 | Green Belt Development | Num
Exis | en belt ar
aber and
ting nos.
oosed nos | specie
2500 | es of tree | | | | | | | | 1.7 | S. No | | ntific N | Common Nan | ne | | | | | | | 1 1 2 2 2 | | | a senegal | | Kher | | | | | 2 Azadirachta indica | | | | | Limdo | | | | | | | 3 | | us Med | | | Butlimbo | | | | | | 4 | | | tron phl | omidis | Arni | 7/4 (1.54) | | | | | 5 | Cocous Nucifera | | Nariyal | | | | | | | | 6 | | mix re | | | Gulmohar | | | | | | 7 | | alyptus | <u> </u> | | Nilgiri | | | | | | 8 | | s glom | | | Umbar | | | | | | 9 | | s hispi | | | Dhed Umbar | | | | | | 10 | | s relig | | | Peepal | | | | | | 11 | | | indica | | Keri | | | | | Number, size, age and species of trees to be cut, trees to be transplanted - Not any | | | | | | | | | 33 | Details of Pollution
Control Systems: | S.
No | | | DESCRIPTION OF THE | ing pollu
ol syster | | Proposed to b installed | e | | | | i | Air | | F14349 AH 20 KANGG | bers &
anical D | ust | Scrubbers & Filter | Bag | | | | 2 | Water | | ETP | & MEE | | ETP, RO, ME
STP | EE& | | | | 3 | Noise | | acous | tic enclo | sures | acoustic enclo | sures | | | | 4 | | | Disposal with TSDF & Incinerator | | | Disposal with | | | 34 | Environmental Management plan | Capital cost (With break up): Rs. 525 Lacs Recurring Cost (Rs. Lacs/annum): 79 Lacs/ Annum | | | | | | | | |----|--|--|--|--|---|--|--|--|--| | | Budgetary Allocation | S | Particular | Recurring cost per annum | Capita
1 cost | | | | | | | | 0 | | | | | | | | | | | $\frac{3}{1}$ | Air pollution control | 0.5 lac | 40.0
Lac | | | | | | | | 2 | Water pollution control | 40.0 Lac | 438
Lac | | | | | | | | 3 | Noise pollution control | 0.3 lac | 5.0 lac | | | | | | | | 4 | Environmental monitoring & management | 12 Lac | 5.0 lac | | | | | | | | 5 | Occupational Health | 0.7 lac | 5.0 lac | | | | | | | | 6 | Green Belt | 0.5 lac | 2.0 lac | | | | | | | | 7 Solid waste management | | 25 Lac | 30
Lac | | | | | | | | 8 | Others (Pls Specify) | | 7 | | | | | | | | To | otal | 79 | 525 | | | | | | | | | | lac/annum | Lacs | | | | | | | | Fin De dat soo bee Por ide bee Co | sults & conclusions have been inconal EIA/EMP Report. tails of the secondary data collectiona) – Secondary data for 10 km radicio economic survey, list of flora are incorporated in Chapter III of Finantial hazard and mitigation measurable hazards along with their minen incorporated in Chapter VII of Finclusion of the EIA study – The survey of sur | on (i.e. Source ar
us has been colled
ad fauna etc. and
nal EIA/EMP Roures — The list of
tigation measure
inal EIA/EMP F
mmary has been | nd year of
ected like
have
eport.
s have
Report. | | | | | | 36 | Public hearing report (If public hearing conducted then submit the salient features) | No
As
end
withea
(C
3); | corporated in Chapter XI of Final Extra Applicable per MoEFCC, O.M. dated 10 th Declosed as Annexure - 2), "projects of thin Industrial Estate or Parks will laring." Since, our project falls in Nopy of Gazette Notification of area thus, the above O.M. is applicable hancement project. | cember, 2014 (Cor activity or united be exempted from the otified Industrial enclosed as Anited Enclosed as Anited Enclosed as Anited Enclosed as Anited Enclosed Enc | Copy
ts located
m Public
l Area
nexure - | | | | | | 37 | Air pollution, water pollution issues in the | | such issue identified | | | | | | | 38. Storage of chemicals (inflammable/explosive/hazardous/toxic substances) STORAGE FACILITIES (RAW MATERIALS) | DIVINGEIACIE | TITED (IXXII IIXXIIXX | LALID) | en variable en en begravet in de en de en | in an alta contraction and the state of | |-----------------|-----------------------|---------|---
---| | Particulars | UOM | Type of | R.M. Ware Hou | se Capacity | | (Raw Materials | | storage | Existing I | Proposed | | | | | (MT) | (MT) | |---|------|----------|------|---------------| | Acetonitrile | Kgs. | BAG | 0.5 | 1 | | Acrylamide | Kgs. | BAG | 1 | 1 | | Aceto Butyrolactone | Kgs. | DRUM | 18 | 25 | | Aluminium Chloride | Kgs. | DRUM | 2 | 3 | | Anisole | Kgs. | DRUM | 1 | 1 | | Crotonaldehyde | Kgs. | DRUM | 5 | 7 | | 2,3-Dichloro Pyrazine | Kgs. | DRUM | 2 | 3 | | Dibromo Dimethyl Hydantion | Kgs. | DRUM | 2 | 3 | | 7-Ethyl Tryptophol | Kgs. | DRUM | 2 | 3 | | 7-Ethyl Tryptophol (7-ETP) [For ED3-A batches) | Kgs. | DRUM | 4 | 6 | | 4-Fluoro Aniline | Kgs. | DRUM | 2 | 3 | | KETO INDOLE (KI) | Kgs. | · F/D | 0.5 | 1 | | Methyl-3- Oxopentanoate | Kgs. | DRUM | 5 | 7 | | 4-Methoxy-2-Nitroaniline | Kgs. | BAG | 9 | 13 | | Methyl-3- Oxopentanoate [Non DMF] | Kgs. | DRUM | 3 | 4 | | 2-Ethylamino-Ethanol | Kgs. | DRUM | 12 | 17 | | Monochlorobenzene | Kgs. | DRUM | 1.5 | 2 | | Para hydroxy Aceto
Phenone(PHAP) | Kgs. | SACK | 70 | 98 | | Phenyl Hydrazine Hydrochloride | Kgs. | BAG | 1 | 1 | | Salicylic Acid I.P. | Kgs. | BAG | 5 | 7 | | Sodium Azide | Kgs. | F/D | 18 | 25 | | Azobisisobutyl isonitrile(AIBN) | Kgs. | BOX | 0.5 | 1 | | Hariocat | Kgs. | DRUM | 0.1 | 0 | | 5% Paladium in Charcoal Catalyst (Type 487) / RD-9205 | Kgs. | DRUM | 0.02 | 0 | | Activated Alloy Catalyst -
KALCAT1961 (Raney | Kgs. | DRUM | 1.5 | 2 | | Tetra Butyl Ammonium Bromide | Kgs. | F/D | 0.5 | 1 | | Activated Charcoal - BW 280 / MM-WC | Kgs. | BAG | 0.3 | 0 | | Activated Carbon - Grade 55 NS / MM-WC | Kgs. | BAG | 10 | 14 | | ACTIVATED CARBON [PURCARB SC 40 / MMW SP 1] | Kgs. | BAG | 5 | 7 | | Carbon Di-Sulphide | Kgs. | DRUM | 1 | 1 | | HYFLOW (PURIFIED SILICONS-CELITE 545) | Kgs. | BAG | 2 | 3 | | Diethylamine | Kgs. | DRUM | 1.5 | 2 | | Dimethyl Sulphate (D.M.S.) | Kgs. | DRUM | 1 | | | Disodium EDTA | Kgs. | BOTTEL | 0.01 | o o | | POTASSIUM HYDROXIDE
FLAKES | Kgs. | BAG | 1.5 | 2 | | Potassium Iodide | Kgs. | DRUM | 0.1 | 0 | | Para Toulene Sulphonic Acid | Kgs. | BAG | 0.3 | 0 | | Sodium Bi-Carbonate | Kgs. | BAG | 0.5 | $\frac{1}{1}$ | | Sodium hydro sulphite(Anhydrous) | Kgs. | TIN DRUM | 1 | i | | SODIUM BOROHYDRIDE | Kgs. | TIN DRUM | 0.5 | i | | Sodium Nitrite | Kgs. | BAG | 10 | 14 | |--|-------|----------|------|---------------| | SODIUM METABISULPHITE | Kgs. | BAG | 1.5 | 2 | | Sodium Hydrogen Sulphide 30% | Kgs. | DRUM | 5 | 7 | | Sodium Iodide | Kgs. | DRUM | 0.3 | 0 | | SODIUM BOROHYDRIDE [NON DMF] | Kgs. | TIN DRUM | 2 | 3 | | SODIUM HYPOCHLORITE
SOLUTION FOR NND | Kgs. | DRUM | 10 | 14 | | SALT REFINED | Kgs. | BAG | 5 | 7 | | SULPHUR | Kgs. | BAG | 20 | 28 | | Triethylamine | Kgs. | DRUM | 1 | $\frac{1}{1}$ | | TRIETHYLAMINE
HYDROCHLORIDE(FOR
LOSARTAN POTA | Kgs. | BAG | 12 | 17 | | Ammonia Gas | Kgs. | TONNER | 3.2 | 4 | | Hydrogen Gas | CUM3 | CYL | 0.57 | 1 | | 4-AMINO-N-(3-
CHLOROPYRAZYNYLE)
BENZENE SULFONAMIDE
[SULPHOMETHOZYPYRAZINE] | Kgs. | F/D | 1.5 | 2 | | BCFI (2-Butyl-4-Chloro-5-Formyl Imidazole) | Kgs. | F/D | 3 | 4 | | BCFI (2-Butyl-4-Chloro-5-Formyl Imidazole) [ND] | Kgs. | F/D | 10 | 14 | | 4-CHLOROBENZOYL
CHLORIDE | Kgs. | F/D | 1 | 1 | | INTERMEDIATE - I (ND) [4¿-
{{2-butyl-4-chloro-5-
(hydroxymethyl)-1H imidazol-1-
yl]methyl}biphenyl-2-Ca | Kgs. | BAG | 10 | 14 | | 2-CYANO-4-BROMOMETHYL-
BIPHENYL [OTBB] | Kgs. | BAG | 3 | 4 | | 2-CYANO-4'METHYL-
BIPHENYL (OTBN) [NON DMF] | Kgs. | F/D | 12 | 17 | | SODIUM HYDROXIDE | Kgs. | BAG | 20 | 28 | | Nitric Acid | Kgs. | CARBOY | 5 | 7 | | Sulphuric Acid (Commercial grade) | Kgs. | TANK | 20 | 28 | | THIOGLYCOLIC ACID | Ltrs. | BOTTEL | 2 | 3 | | RECD. TRIETHYLAMINE
HYDROCHLORIDE FOR
LOSARTAN BASE | Kgs. | BAG | 20 | 28 | | ACTIVATED CARBON -GRADE
AC-ULTIMA | Kgs. | BAG | 0.2 | 0 | | CAUSTIC LYE | Kgs. | TANK | 20 | 28 | | Hydrochloric Acid | Kgs. | TANK | 15 | 21 | | HYDROCHLORIC ACID [CP
GRADE : NLT 35%] | Kgs. | TANK | 15 | 21 | | Liquor Ammonia | Kgs. | DRUM | 2.2 | 3 | | Sulphuric Acid (C.P.Grade) | Kgs. | CARBOY | 2 | 3 | | Acetic Acid | Kgs. | CARBOY | 5 | 7 | |---|-------|--------|------|----| | Acetone | Kgs. | TANK | 16 | 22 | | Cyclohexane | Kgs. | TANK | 16 | 22 | | Ethyl Acetate | Kgs. | TANK | 11.4 | 16 | | Isopropyl Alcohol | Kgs. | TANK | 18 | 25 | | Methanol | Kgs. | TANK | 18 | 25 | | METHYLENE CHLORIDE /
DICHLOROMETHANE | Kgs. | TANK | 18 | 25 | | MONO ETHYLENE GLYCOL | Kgs. | DRUM | 10 | 14 | | 1-OCTANOL | Ltrs. | BOTTEL | 0.05 | 0 | | TOLUENE | Kgs. | TANK | 16 | 22 | | TOLUENE | Kgs. | TANK | 16 | 22 | | 1,3 CYCLOHEXANEDIONE | Kgs. | BOX | 0.5 | 1 | STORAGE FACILITIES (PRODUCTS) | S. | PARTICULARS | TYPE OF | BSR CAPACITY IN MT. | | |-----|-----------------------------|---------|---------------------|----------| | NO. | . (Products Finished Goods) | STORAGE | EXISTING | PROPOSED | | 1 | PHPA | BAG | 30 | 40 | | 2 | LOSARTAN BASE | BAG | 10 | 30 | | 3 | ETODOLAC | DRUM | 7 | 10 | | 4 | LOSARTAN POTASSIUM | DRUM | 2 | 5 | | 5 | MMBI | DRUM | 9 | 9 | | 6 | HNDA | DRUM | 6 | 20 | | 7 | MKI | DRUM | 0.5 | 0.5 | | 8 | SMP | DRUM | 0.5 | 0.5 | | 9 | 6 FTQ | DRUM | 2 | 2 | | 10 | 5NSA | DRUM | 0.2 | 0.2 | | 11 | NDA | DRUM | 0.3 | 10 | 3. The proposal has been considered by SEIAA in its 99th meeting & decided to accord environmental clearance to the said project under the provisions of Environment Impact Assessment Notification, 2006 subject to implementation of the following terms and conditions: ## General Conditions for Pre-construction phase:- - (i) PP to achieve Zero Liquid Discharge (ZLD) by incorporating Multiple Effect Evaporator which shall have an independent energy meter (delinked from ETP energy meter). - (ii) No additional land shall be used /acquired for any activity of the project without obtaining proper permission. - (iii) This environmental clearance is issued subject to implementation of online air monitoring facility equipment. - (iv) PP to provide STP having capacity 25 KLD next to ETP. - (v) All internal roads shall be of 6 M width. - (vi) For controlling fugitive natural dust, regular sprinkling of water & wind shields at appropriate distances in vulnerable areas of the plant shall be ensured. - (vii) Proper Housekeeping programmers shall be implemented. - (viii) In the event of the failure of any pollution control system adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieve. - (ix) A stack of adequate height based on DG set capacity shall be provided for control and dispersion of pollutant from DG set.(If applicable) - (x) A detailed scheme for rainwater harvesting shall be prepared and implemented to recharge ground water. - (xi) Arrangement shall be made that effluent and storm water does not get mixed. - (xii) Periodic monitoring of ground water shall be undertaken and results analyzed to ascertain any change in the quality of water. Results shall be regularly submitted to the Maharashtra Pollution Control Board. - (xiii) Noise level shall be maintained as per standards. For people working in the high noise area, requisite personal protective equipment like earplugs etc. shall be provided. - (xiv) The overall noise levels in and around the plant are shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures, etc. on all sources of noise generation. The ambient noise levels shall confirm to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989. - (xv) Green belt shall be developed & maintained around the plant periphery. Green Belt Development shall be carried out
considering CPCB guidelines including selection of plant species and in consultation with the local DFO/ Agriculture Dept. - (xvi) Adequate safety measures shall be provided to limit the risk zone within the plant boundary, in case of an accident. Leak detection devices shall also be installed at strategic places for early detection and warning. - (xvii) Occupational health surveillance of the workers shall be done on a regular basis and record maintained as per Factories Act. - (xviii) The company shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling. - (xix) The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Waste (Management and Handling) Rules, 2003 (amended). Authorization from the MPCB shall be obtained for collections/treatment/storage/disposal of hazardous wastes. - (xx) The company shall undertake following Waste Minimization Measures: - Metering of quantities of active ingredients to minimize waste. - •Reuse of by- products from the process as raw materials or as raw material substitutes in other process. - Maximizing Recoveries. - Use of automated material transfer system to minimize spillage. - (xxi) Regular mock drills for the on-site emergency management plan shall be carried out. Implementation of changes / improvements required, if any, in the on-site management plan shall be ensured. - (xxii) A separate environment management cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards. - (xxiii) Separate funds shall be allocated for implementation of environmental protection measures/EMP along with item-wise breaks-up. These cost shall be included as part of the project cost. The funds earmarked for the environment protection measures shall not be diverted for other purposes and year-wise expenditure should reported to the MPCB & this department - (xxiv) The project management shall advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the marathi language of the local concerned within seven days of issue of this letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the Maharashtra Pollution Control Board and may also be seen at Website at http://ec.maharashtra.gov.in - (xxv) Project management should submit half yearly compliance reports in respect of the stipulated prior environment clearance terms and conditions in hard & soft copies to the MPCB & this department, on 1st June & 1st December of each calendar year. - (xxvi) A copy of the clearance letter shall be sent by proponent to the concerned Municipal Corporation and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the Company by the proponent. - (xxvii) The proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; SPM, RSPM. SO₂, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the project shall be monitored and displayed at a convenient location near the main gate of the company in the public domain. - (xxviii)The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as well as by e-mail) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. - (xxix) The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail. - 4. The environmental clearance is being issued without prejudice to the action initiated under EP Act or any court case pending in the court of law and it does not mean that project proponent has not violated any environmental laws in the past and whatever decision under EP Act or of the Hon'ble court will be binding on the project proponent. Hence this clearance does not give immunity to the project proponent in the case filed against him, if any or action initiated under EP Act. - 5. The Environment department reserves the right to revoke the clearance if conditions stipulated are not implemented to the satisfaction of the department or for that matter, for any other administrative reason. - 6. Validity of Environment Clearance: The environmental clearance accorded shall be valid for a period of 7 years as per MoEF & CC Notification dated 29th April, 2015 to start of production operations. - 7. In case of any deviation or alteration in the project proposed from those submitted to this department for clearance, a fresh reference should be made to the department to assess the adequacy of the condition(s) imposed and to incorporate additional environmental protection measures required, if any. - 8. The above stipulations would be enforced among others under the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and rules there under, Hazardous Wastes (Management and Handling) Rules, 1989 and its amendments, the public Liability Insurance Act, 1991 and its amendments. - 9. Any appeal against this environmental clearance shall lie with the National Green Tribunal (Western Zone Bench, Pune), New Administrative Building, 1st Floor, D-, Wing, Opposite Council Hall, Pune, if preferred, within 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010. (S. M Gavai) Member Secretary, SEIAA ## Copy to: - 1. Shri T. C. Benjamin, IAS (Retired), Chairman, SEAC-I, 602, PECAN, Marigold, Behind Gold Adlabs, Kalyani Nagar, Pune 411014. - 2. Additional Secretary, MoEF & CC, Indira Paryavaran Bhavan, Jorbagh Road, Aliganj, New Delhi-110003. - 3. Member Secretary, Maharashtra Pollution Control Board, with request to display a copy of the clearance. - 4. The CCF, Regional Office, Ministry of Environment and Forest (Regional Office, Western Region, Kendriya Paryavaran Bhavan, Link Road No- 3, E-5, Ravi-Shankar Nagar, Bhopal- 462 016). (MP). - 5. Regional Office, MPCB, Raigad. - 6. Collector, Raigad - 7. IA- Division, Monitoring Cell, MoEF & CC, Indira Paryavaran Bhavan, Jorbagh Road, Aliganj, New Delhi-110003.) 8. Select file (TC-3) (EC uploaded on