STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY

SEAC-2015/CR-375/TC-2 Environment department, Room No. 217, 2nd floor, Mantralaya Annexe, Mumbai- 400 032. Date: 18 July, 2016.

To, M/s. IPCA Laboratories Pvt. Ltd. C-89 to C-95, MIDC Industrial Area, Dist. Raigad- 402309.

Subject: Environment clearance for proposed expansion of production capacity of Active Pharmaceutical Ingredient & Bulk Drug at the existing plantat plot No.C-89 to C-95,MIDC, Mahad, Dist. Raigad by M/s.IPCA Laboratories Pvt.Ltd

Sir,

This has reference to your communication on the above mentioned subject. The proposal was considered as per the EIA Notification, 2006, by the State Level Expert Appraisal Committee-I, Maharashtra in its 117th meeting and decided to recommend the project for prior environmental clearance to SEIAA. Information submitted by you has been considered by State Level Environment Impact Assessment Authority in its 99th meeting.

2. It is noted that the proposal is considered by SEAC-I under screening category 5(f) B1 as per EIA Notification 2006.

Brief Information of the project submitted by Project Proponent is as:

1	Name of the Project	Proposed Enhancement in Production Capacity of Active Pharmaceutical Ingredient (API) (From 60 TPA to 86 TPA) & Bulk Drug Intermediate Products (From 647.88 TPA to 1904 TPA) within Existing Plant Premises at Plot No. C – 89 to C – 95, MIDC Mahad, Tehsil Mahad, District Raigad (Maharashtra) by M/s. Ipca Laboratories Limited formally known as Exon Laboratories Pvt. Ltd					
2	Name, address, e-mail & contact number of Proponent	Nam e	Mr. Paresh Desai (GM – Operation)	Manoj Kumar Mittal Vice President EHS (Corporate)			
		Address	Ipca Laboratories Ltd. C - 89 to C - 95 MIDC Area, MIDC Mahad,	Ipca Laboratories Ltd. Ratlam (MP)			

			Dist Raigad (MH)				
	、 、	Tele pho ne no	02145 -232524, 232058	+91 7412 27 8321			
		Mob ile no.	09699469655	+91 93000 3626			
		Ema il ID	paresh.desai@ip ca.com	manojkumar.mi	ttal@ipca.com		
3	Name, address, e-mail & contact number of Consultant	 Name: J. M. EnviroNet Pvt. Ltd. Address: 1st& 2nd Floor, S. C. O. 16, Sector 10-A, Pace City, Gurgaon- Haryana Telephone number: 0124-4141926 Mobile number: 09910494521 Email ID: jmenviron@hotmail.com 					
4	Accreditation of consultant (NABET Accreditation)	J.M. EnviroNet Pvt. Ltd. is listed at serial no. "89" of the List of Accredited EIA Consultant Organization displayed on MoEFCC website (http://www.qcin.org/nabet/EIA/documents/Accredited%20con sultants.pdf), updated as on 5 th Nov., 2015.					
5	New Project / Expansion in existing project/ Modernization/ Diversification in exiting project		nsion project				
6	If expansion/ Diversification, whether environmental clearance has been obtained for existing project (If yes, enclose a copy with compliance table)	cleara in 19 Clear	89, now we are her	of projects. This peby applying for latification dated 14	lant was established		
7	Activity schedule in the EIA Notification	time		falls in Category	and as amended from 'B', S. No 5(f) (4) ate).		
8	Area Details	•Tota	Il plot area (sq. m.) It up area (Sq. m.):	: 26588 sq. m. (6.			
9	Name of the Notified		C Industrial Area, I				
10	Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the		Meeting of SEAC-	I, Maharashtra on	dated 26.03.2015		
10	Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the meeting)	98 th] (Age	nda Item No. 14)		dated 26.03.2015		
	Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the	98 th 1 (Age Tota					
	Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the meeting) Estimated capital cost of the Project (including cost for land, building, plant	98 th 1 (Age Tota	nda Item No. 14) I cost of Project: Rs				
	Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the meeting) Estimated capital cost of the Project (including cost	98 th 1 (Age Tota S. 1 2	nda Item No. 14) I cost of Project: Rs No. Particulars Land Building	s. 3895.38 Lacs	Amount (in Lakhs 35.00 1030.38		
	Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the meeting) Estimated capital cost of the Project (including cost for land, building, plant	98 th] (Age Tota S. 1 2 3	nda Item No. 14) I cost of Project: Rs No. Particulars Land Building Plant & Mac	s. 3895.38 Lacs	Amount (in Lakhs) 35.00 1030.38 2005.67		
	Industrial area/ MIDC area TOR given by SEAC? (If yeas then specify the meeting) Estimated capital cost of the Project (including cost for land, building, plant	98 th 1 (Age Tota S. 1 2	nda Item No. 14) I cost of Project: Rs No. Particulars Land Building Plant & Mac Computer M	s. 3895.38 Lacs	Amount (in Lakhs 35.00 1030.38		

žų.

		6			ion Cont.	Equip.	87.00
		7		iture & F			19.61
		8		trical Fitt			119.53
			Offi		15.78		
		10	V - benefit in the second of t	oratory E	quip.		122.17
			Tota				3895.38
12	Location details of the project:	Long Loca Mah	tude - 18°06 gitude - 73° ation - Plot ad, District ation above	29'07.10' No. C - 8 : Raigad	'E to 73°2' 9 to C – 9: (Maharash	9'15.05"E 5, MIDC : tra).	Mahad, Tehsil:
13	Distance from Protected Areas / Critically Polluted areas / Eco-sensitive areas / inter-State boundaries	No I		reas/ Crit	ically Poll	uted Área	s /Eco-sensitive
14	Raw materials (including	111	Para Hydro	xv Phenv	Acetamic	le (PHPA	
	process chemicals, catalysts & additives).	S. N o.	Raw material Name	Existin g Month ly Qty. (MT/ Month)	Additio nal Monthl y Qty. (MT/M onth)	Total Monthl y Qty. (MT/ Month	Source & Mode of transport
		1	Para Hydroxy Aceto Phenone (PHAP)	40.5	25.19	65.69	BASF South East Asia PTE Ltd/Container
		2	Sulphur	9.99	6.20	16.19	Indian Agro Chem Industries Pvt. Ltd/Lorry
		3	NH3 Gas	10.125	6.28	16.325	Jaysons Ammonia & Chemicals Pvt. Ltd./Lorry
	4	Isopropy l Alcohol	77.22	47.96	125.18	Deepak Fertilizers & Petrochemicals Corporation Ltd./Tanker	
	5	Toluene	56.7	35.21	91.91	Exxon mobile (Imported)/Tank er	
		6	Carbon	2.160	1,34	3.5	Universal Carbons (India)/Lorry
		7	Acetic Acid	0.297	0.184	0.481	Thana Acid & Chemical Co./Lorry
		8	Hyflow	0.108	0.0670	0.175	Silicon Products (P)

· Cu

					Associates/Lorr y
9	Hydrose	0.162	0.1006	0.2626	Rajeshwari Dye-Chem. P. Ltd/Lorry
2] H	lydroxy No	val Diam	ine (HNI	DA)	
1	Acetyl Butyro Lactone (ABL)	7.5	24.05	31.55	Linhai Realsun Chemical CO., Ltd./Lorry
2	NA Salt	1.8	5.77	7.57	Tata Chem/ Lorry
3	Hydroch loric Acid (HCl)	25.8	82.73	108.53	GHCL, Gujarat/Tanker
4	Para Toluene Sulphoni c Acid (PTSA)	0.60	1.92	111.05	D.K. Pharmachem Pvt. Ltd./Lorry
5	Mono Ethylene Glycol (MEG)	3.45	11.06	14.51	Golden Dyechem(Farsa) / Lorry
6	Cyclohe xane	13.68	43.86	57.54	International Solvents & Chemical Co./ Tanker
7	Toluene	25.8	82.73	108.53	Exxon mobile (Imported)/Tank er
8	Sodium Iodide (NAI)	0.075	0.240	0.315	Samrat Pharmachem Limited/Lorry
9	Ehylene Amino Ethanol (EAE)	9.75	31.26	41.01	Amines & Plasticizers Ltd./Lorry
10	Caustic lye Methyle ne Dichlori de (MDC)	19.8	63.49	83.29	GHCL, Gujarat/Tanke
11	Raney Nickel	0.308	0.981	1.289	Monarch Catalyst Pvt.Ltd.,/Lorry
12	H2 Cylinder		721.51	946.51	Super Industrial Gases/Lorry
13	N2	150	481	631 nos	Kokan Gases/

TH.

......

• 7.

		Cylinder	Nos			Lorry
•	14	NH3 gas	3.15	10.10	13.25	Jaysons Ammonia /Lorry
	3]]	Thioephene –	- 2 – Alc	lehyde (T	2A)	
	1	Thiophene	4.5	NIL	4.5	Lianyungang, China/Loory
	2	Dimethyl Farmamid e	4.5	NIL	4.5	RCF/Lorry
	3	Phosphoro us Oxichlorid e	9.36	NIL	9.36	United Phosphorous /Lorry
	4	Ethylene Dichloride	10.8	NIL	10.8	Finolex, Ratnagiri /Lorry
		Caustic Lye	20.25	NIL	20.25	GHCL, Gujarat /Tanker
		2 Mercapto – MBI)	· 5 Meho	xy Benzi	imidizole	
	1	4- Methoxy- 2-nitro aniline (MNA)	6.6	124.2	130.82	LEO Tex Industries/Lorry
	2	Sodium Hydrogen Sulphide (NaHS)	11.55 6	218	229.556	Eureka Chemicals/Lorr y
	3	Carbon Disulphide	4.62	87	91.62	Jinesh Chemicals Private Ltd/Lorry
	4	1-Octanol	66 Ltrs	1243	1309	Spectrochem Pvt. ltd./ lorry
	5	Methanol	12.54	236.1	248.64	Jupiter Dyechem Pvt. Ltd/ Tanker
	6	Caustic Flakes	3.3	62.14	65.44	GHCL, Gujarat/ Lorry
	7	Activated Carbon	1.32	24.85	26.17	Global Adsorbents Pvt. LTD.,/ Lorry
	8	Hydrochlo ric Acid	3960 Ltrs	74580	78540	Manish Labchem Private Limited/ Tanker
	9	Sodium Hydrosulfi de	0.132	2.48	2.612	Rajeshwari Dye-chem. P. Ltd /lorry
	1	Ethyl	6600	12429	130899	Laxmi Organic

•

0	Acetate	Ltrs	9		Industries Limited/ Tanker
67.00	3-Methyl Thi MT2A)	oephene	: – 2 – Al	dehyde	
1	Methyle Thiophene	4.25	0.0067 4	4.25674	Zibo senbao chem. China/ lorry
2	Dimethyl Farmamid e	4.016	0.0637 1	4.07971	RCF/ Lorry
3	Phosphoro us Oxychlori de	8. 33	0.0132	8.3432	United Phosphorous /Lorry
4	Ethylene Dichloride	8.28	0.0131	8.2931	Finolex, Ratnagiri /Lorry
5	caustic lye	20.45	0.0324 4	20.4824	GHCL, Gujarat/Tanker
6]	6-Floro Tetra	Hydro	Quinolin	e (6FTQ)	
1	4 fluoro Aniline	6.6	Nil	6.6	Aarti Industries Ltd./Lorry
2	Hydrochlo ric Acid (HCl)	18.14 4	Nil	18.144	GHCL ,Gujarat
3	Crotonalde hyde	4.44	Nil	4.44	Godavari Biorefineries Ltd/Lorry
4	Toluene	12.38 4	Nil	12.384	Exxon mobile (Imported) /Tankar
5	Caustic lye	15.98 4	Nil	15.984	GHCL, Gujarat/ Tanker
6	Catalyst	0.002	Nil	0.002	Hindustan Platinum Pvt. Ltd./Lorry
7	H2 gas	120 Nos	Nil	120 Nos	Super Industrial Gases/Lorry
8	N2 cylinder	20 Nos	Nil	20 Nos	Kokan Gases/Lorry
9	Sodium Bicarbonat e	0.040	Nil	0.040	GHCL, Gujarat/Lorry
7	4(2Methoxy	Ethyl) I	Phenol (1	MEP)	
1	2 Phenyl Ethanol	10.00	Nil	10.00	IPCA Lab Ltd. Ratlam/Lorry
2	Di methyl Sulphide	1.375	Nil	1.375	Aarti Ind. /Lorry
3	Tetra Butyl Ammoniu m	0.129	Nil	0.129	Dishman Pharmaceutical Lorry

	Bromide	70 AM	Marini K		
4	Caustic Flakes	13.12 5	Nil	13.125	GHCL, Gujarat/Lorry
5	Sodium Salt	1.00	Nil	1.00	GHCL, Gujarat/Lorry
6	Nitric Acid	3.9	Nil	3.9	Acid Industries /Lorry
7	H2SO4	28.34 1	Nil	28.341	DMC/Tanker
8	Sodium Bicarbonat e	0.558	Nil	0.558	TATA Chem /Lorry
9	Toluene	22.10	Nil	22.102	Exxon Mobile (IMP)/Tanker
1 0	Rany Nickel Catalyst	0.020	Nil	0.020	Monarch Catalyst/Lorry
1 1	Hydrogen	0.225	Nil	0.225	Super Ind Gases, Thane/Lorry
1 2	Hyflow	0.010	Nil	0.010	Silicon Products (P) Associates/Lorr y
1 3	Nitrogen	0.050	Nil	0.050	Kokan Gases/Lorry
1 4	Methanol	7.98	Nil	7.98	PCC Iran (IMP)/Tanker
1 5	Hydrose	0.221	Nil	0.221	Rajeshwari Dye-Chem. P. Ltd /Lorry
1 6	sodium Nitrite	2.55	Nil	2.55	Deepak Nitrite/Lorry
8]	Etodolac				
1	7 Ethyl Tryptopho l	4.5	3.61	8.11	Zhejiang Medicines & Health Products Imp.& Exp. Co. Ltd./ Container
2	Methyl 3 Oxopentan oate	3.69	2.96	6.65	Zhejiang Medicines & Health Products Imp.& Exp. Co. Ltd./ Container
3	Methanol	18.00	14.46	32.46	PCC Iran (INP)/Tanker
4	Sulphuric acid	2.25	1.80	4.05	Manish Lab chem Private Limited/Lorry
5	Caustic flakes	0.900	0.723	1.623	GHCL, Gujarat/Lorry

...1

.4

6	Hydrochlo ric Acid	2.32	1.863	4.183	GHCL, Gujarat/Tanker
9]]	Losarton Bas	e.c.		是的思想的	
1	Intermedia te – I	6.00	7.5	13.5	Makers Lab Ltd, Dombilval/ Lorry
2	Toluene	11.61	14.5	26.11	Exxon Mobil (Imp)/ Tanker
3	Sodium Azide	4.08	5.1	9.18	Corvine chemicals & pharmaceuticals ltd./ Lorry
4	N-Methyl pynilidino ne Triethyl Amine	8.64	10.8	19.44	Alkyl amines chemicals ltd./ lorry
5	Caustic Soda flakes	3.6	4.5	8.1	GHCL, Gujarat/Lorry
6	Carbon	0.600	0.75	1.35	M.M. Corporation /Lorry
7	Hydrose	0.600	0.75	1.35	Rajeshwari Dye-Chem. P. Ltd /Lorry
8	Sodium Nitrite	1.8	2.25	4.05	Deepak Nitrite Limited /Lorry
9	HCl (CP)	6.00	7.5	13.5	Manish Labchem Private Limited/Tanker
1 0	Hyflow	0.060	0.075	0.135	Silicon Product (P) Associates/ Lorry
1 1	IPA	4.68	5.85	10.53	Deepak Fertilizers & Petrochemicals Corporation Ltd/ Tanker.
1 2	N2 Gas	45 Nos	56.25	101.25	Kokan Gases/Lorry
1	0] Methyl Ket 1,3 yclohexan edione	0.300	Nil	0.300	Atul Ltd. Valsad/ Lorry
2	Phenyl Hydrazine HCL	0.405	Nil	0.405	Keminova India/Lorry
3	Methanol	0.684	Nil	0.684	PCC Iran (Imp)/Tanker

			*** *********************************	an error in a company of the first feature.	Nederland year en bestelle en werde dat een bevel verstelle en be
4	Caustic Flakes	0.137	Nil	0.137	GHCL, Gujarat/Lorry
5	Acetic Acid	4500 Ltrs	Nil	4500 Ltrs	Thana Acid & Chemical Co./ Lorry
6	Zinc Chloride	4.56	Nil	4.56	Vijay Chem Services/ Lorry
7	Acetone	3.822	Nil	3.822	ICC Chem (Imp)/ Tanker
8	Dimethyl sulphide	0.294	Nil	0.294	Aarti Industries Ltd./ Lorry
9	Toluene	1.548	Nil	1.548	Exxon mobil (Imp)/Tanker
1 0	Phenyl Hydrazone	0.720	Nil	0.720	Cheminova Ltd Solapur/ Lorry
11] DSP				
1	Caustic Soda flakes	Nil	1540 kg	1540 kg	GHCL, Gujarat/Lorry
2	Bon Acid	Nil	4000 kg	4000 kg	Suzhou Untong Chem China/ Lorry
3	Paraformal -Dehyde	Nil	530 kg	530 kg	Ercros Ind/Lorry
4	Refined Salt	Nil	100 kg	100 kg	GHCL/Lorry
12] THP				
1	3 Methyl Amino Propyl Amine	Nil	3600 kg	3600 kg	High Rice Chem/ Lorry
2	Acetoni- Trile	Nil	1959 kg	1959 kg	Alkyl Amines/ Lorry
3	Catalyst Hariocat	Nil	87300 kg	87300 kg	Harium/ Lorry
4	Methanol Fresh (For flushing)	Nil	120 kg	120 kg	PCC Iran (Imp) / Lorry
13] Losarton Po	otassium			
1	Losartan Base	Nil	7400 kg	7400 kg	Ipca Lab Ltd. Mahad
2	Methanol	Nil	7400 kg	7400 kg	PCC Iran (Imp) Tanker
3	Potassium Hydroxide flakes	Nil	1125k g	1125kg	GHCL, Gujarat Lorry
4	Activated Carbon (Carbopol	Nil	1200k	1200kg	Global Adsorbents Pvt Ltd./Lorry
	SC40)	動類的人類的	MISSERVICE CONTROL		

. 14

1.4

			kg		USA/ Tanker
6	Hyflow (Celite- 545)	Nil	480 kg	480 kg	Silicon Products (P) Associates/Lorr y
7	Sodium Hydro Sulphite (Hydrose)	Nil	90 kg	90 kg	Rajeshwari Dye-Chem. P. Ltd /Lorry
8	Methanol For Partial Cleaning	Nil	750 kg	750 kg	PCC Iran (Imp)/ Tanker
9	Nitrogen Gas	Nil	150 no	150 no	Kokan Gases/Lorry
14] CHBP				
1	4-Chloro Benzoyl Chloride	Nil	2225 kg	2225 kg	Nantong Prime,China/Lo rry
2	Anisole	Nil	1500 kg	1500 kg	Mithila Raysan/Lorry
3	Anhy.Alu minium Chloride	Nil	4900 Kg	4900 Kg	GHCL, Gujarat/ Lorry
4	Mono Chloro Benzene	Nil	3750 kg	3750 kg	Aarti/ Cromine Organic /Lorry
5	Caustic Flakes	Nil	540 kg	540 kg	GHCL, Gujarat/ Lorry
6	Conc. HCL	Nil	5430 kg	5430 kg	GHCL, Gujarat/ Tanker
7	Activated Carbon (BW 280)	Nil	135 kg	135 kg	Brilex Chem /Lorry
8	Hyflow	Nil	335 kg	335 kg	Silicon Product/Lorry
15] Sulphametl	oxy Py			
1	SCP (PURE)	Nil	1500 Kg	2925 Kg	Jiangxi Long ,China/Lorry
2	Methanol	Nil	23400 Kg	46800 Kg	PCC Iran(Imp)/Tanke r
3	КОН	Nil	3100k g	6200 kg	GHCL, Gujarat/ Lorry
4	Activated Carbon (BW-280)	Nil	165 _. kg	330 kg	MM Corporation/ Lorry
5	Hyflow	Nil	75 kg	150 kg	Silicon Product/Lorry
6	Acetic Acid	Nil	5215 Kg	8700 Kg	Thana Acid /Lorry
7	Activated	Nil	65 kg	130 kg	Brilix Chem

	Carbon (BW-280)				/Lorry
8	Hyflow	Nil	25 Kg	52 Kg	Silicon Product/Lorry
16] 5 NSA		4X66708618		
1	Salycylic acid	Nil	42400 kg	42400 kg	Siddharth Carbochem Products Ltd./ Lorry
2	58% HN03	Nil	66780 kg	66780 kg	Acid Industries/Lorry
3	Methanol	Nil	15110 0 kg	151100 kg	PCC Iran(Imp)/Tanke r
4	Act. Carbon (NS55)	Nil	424 kg	424 kg	Universal Carbons (India)/Lorry
17	Novaldiam	ine (N	DA)		
1	ABL	Nil	30000 Kg	30000 Kg	Zhejiang Medicines & Health Products Imp.& Exp. Co.Ltd./Lorry
2	HCL	Nil	68200 kg	68200 kg	GHCL, Gujarat
3	Nacl	Nil	9000 Kg	9000 Kg	GHCL, Gujarat
4	Cyclohex ane	Nil	49680 Kg	49680 Kg	International Solvents & Chemical Co /Tanker.
5	MEG	Nil	13800 Kg	13800 Kg	Golden Dyechem/(Farsa) /Lorry
6	PTSA	Nil	240 Kg	240 Kg	D.K. Pharmachem Pvt. Ltd./Lorry
7	TEA	Nil	750 Kg	750 Kg	Balaji Amines Limited/Lorry
8	Toluene	Nil	72000 Kg	72000 Kg	Exxon Mobile (Imp) /Tanker
9	DEA	Nil	29340 Kg	29340 Kg	Alkyl Amines /Lorry
1 0	KI	Nil	300 Kg	300 Kg	Makers Lab /Lorry
1 1	Caustic flakes	Nil	20580 Kg	20580 Kg	GHCL, Gujarat/ Lorry
1 2	МеоН	Nil	72000 kg	72000 kg	PCC Iran (Imported)/Tank er
1	Raney	Nil	1200	1200	Monarch

....

3	Nickel		Kg	Kg	Catalyst Pvt. Ltd.,/Lorry
1 4	H2 Cylinder	Nil	1020 No.	1020 No.	Super Ind Gases/Lorry
18] Flumequin	e			
1	6-FTQ	Nil	4500 kg	4500 kg	Exon Lab.
2	EMME	Nil	6300 Kg	6300 Kg	Amines & Plasticizers, Dombivli
3	Toluene	Nil	6920 Kg	6920 Kg	EXXON Mobile (Imp) /Tanker
4	PPA	Nil	9450k g	9450k g	GHCL, Gujarat
5	Methanol	Nil	20000 Kg	20000 Kg	PCC Iran (Imp)/Tanker
19	1 ROBO				
1	KDVA	Nil	2400 kg	2400 kg	Zhejiang Medicines & Health Products Imp.& Exp. Co. Ltd./Lorry
2	Acetic Acid	Nil	2400 kg	2400 kg	GHCL, Gujarat
3	Acetic anhydrid e	Nil	2400 kg	2400 kg	Thomas baker, Gujarat
4	Nitric Acid (65%)	Nil	2540 kg	2540 kg	Acid Industries/ Lorry
5	Oleum	Nil	9600 kg	9600 kg	DMC /(Farsa)/Lorry
6	Nitro- Benzene	Nil	3360 kg	3360 kg	Urvashi chem. Mumbai / Lorry
7	Glycerol	Nil	4800 kg	4800 kg	Triveni Aromatics /Lorry
8	Caustic lye	Nil	1200 kg	1200 kg	GHCL, Gujarat
9	Ethyl Acetate	Nil	70000 kg	70000 kg	Laxmi organics/Tanker
1 0	Methanol	Nil	5000 kg	5000 kg	PCC iran /Tanker
1 2	Raney Nickel	Nil	200 kg	200 kg	Monarch Catalyst Pvt. Ltd./Lorry
1 3	N2 gas	Nil	2400 kg	2400 kg	Kokan gas, Lorry
1 4		Nil	4000 kg	4000 kg	Super Ind. Gases. Lorry
2	0] CLP-II				
1	OCPAA	Nil	1125 Kg	1125 Kg	Zhejiang Medicines &

(i i

					Health Products Imp.& Exp. Co. Ltd./Lorry
2	EDC	Nil	18000 kg	18000 kg	Phenolex, Ratnagiri/ Tanker
3	Phosp. Trichlori de	Nil	285 kg	285 kg	Sandhya Chem, Gujarat, Lorry
4	Bromine	Nil	2340 kg	2340 kg	DMC chem., Lorry
5	Methanol	Nil	1125 Kg	1125 Kg	PCC Iran, Tanker
6	MDC	Nil	2250 Kg	2250 Kg	Gujrat Alkely, tanker
7	Sodium Metabisu Iphite	Nil	570 kg	570 kg	Megh mani, Gujarat/ Lorry
8	2- Thiophen e Ethylami ne	Nil	750 Kg	750 Kg	Zhejiang Medicines & Health Products Imp.& Exp. Co. Ltd./Lorry
9	Paraform aldehyde	Nil	195 kg	195 kg	Triveni aromatics/ lorry
1 0	DMF+H Cl	Nil	1005 kg	1005 kg	DMC, Dombivli / Lorry
1 2	Sodium carbonat e	Nil	1770 kg	1770 kg	AR Entp, Mumbai/ lorry
1 3	Acetone	Nil	9000 Kg	9000 . Kg	Amiriddhi, Mumbai/ tanker
1 4	H2SO4	Nil	405 kg	405 kg	DMC, dombivli / Lorry
21] TBCA				
1	MCA	Nil	15000 Kg	15000 Kg	Urvashi Chem , Mumbai/ Lorry
2	E- Butanol	Nil	11700 Kg	11700 Kg	Urvashi Chem , Mumbai/ Lorry
3	Sulphuric Acid	Nil	4375 kg	4375 kg	DMC, Domb/ lorry
4	Soda Ash	Nil	2500 kg	2500 kg	Mazda chem. / lorry.
5	MDC	Nil	11250 kg	11250 kg	Gujarat Alkely, / Tanker
22] Di-Benzot	hiazepin			L - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
1	2-NDS	Nil	3000 Kg	3000 Kg	Mazda Chem, Mumbai/ Lorry
2	Raney Nickel	Nil	200 kg	200 kg	Monarch catalyst , Dombivli/ Lorry
3	Methanol	Nil	16000 kg	16000 kg	PCC Iran/ Tanker

			H2 cyllender	Nil	30	0 kg	300 k		er Indus es, / Lo		
		5	N2	Nil	20	200 kg		Kol	Kokan Gases/ Lorry		
		6	MDC Nil		80 K		800 Kg	Ma	Madhu Chem/ Tanker		
		8	PCF	Nil	10	00	1000 Kg		Uravashi Chem. / Lorry.		
		9	NAOH	Nil	80	0	800 Kg		arat All	cely,	
		10	Sodium carbonate	Nil	70	0(700 Kg	AR	ENTP, mbai/ lo		
	15 Production details	12	N- Hexane	Nil	22	250	2250 kg		stha che		
		13	Acetone	Nil	60	000	6000 Kg		veni Ent	ip/	
		14	Poly Phosphor ic acid	Ni	1/1/	200	1200 kg	Sar	ndhya ch mbai/ L		
15		S. N o.	Product Nar	ne	Max. Qty MT/ month (Existi g as pe conser	Qt (E as n co	ax. y TPA xisting per nsent)	基次的 化混合物经复合效应	Delet ed produ ction Quant ity TPA	Total Propo sed Produ ction TPA	
			Para Hydro Phenyl Acetamide	ху	27.50	33	0.00	270 .	00	600.0 0	
		2	Hydroxyno diamine (HNDA)	vaal	2.08	24	.96	155.0 4	00	180.0 0	
		3	Thioephene - Aldehyde (T2A)		2.16	25	.92	00.00	0.92	25.00	
		4	2-Mercapto- 5Methoxy Benzimidizo (MMBI)		0.42	42 5.04		74.96	00	80.00	
		5	6-Methoxy Amino Quionoline (ROBO)		0.25	3.	00	00	00	00.00	
	6	3-Methyl Thioephene 2Aldehyde (3MT2A		2.08	24	1.96	0.04	00	25.00		
		7	6-Fluro Ter Hydro Quinoline	ta	2.50	30	0	15	00	45.00	

			(6FTQ)					
		8	MEP	4.00	48.00	00	18.0	30.00
		9	Etodolac	3.00	36.00	36.00	00	72.00
		10	Flumequine	2.00	24.00	00	24.00	00.00
		11	CLP- II	0.30	3.6	00	3.6	00.00
		12	Losarton Base	5.00	60	240,0	00	300.0 0
		13	13 Methyl Keto 1.5 Indole		18.36	00	15.36	3.00
		14	Di Benzo Thiazepine	1.17	14.04	00	14.04	00.00
		15	T- Butyl Chloro Acetate	5.00	60.00	00	60.00	00.00
		16	DSP			50.00		50.00
			THP			50.00		50.00
		() () () () () () () () () () () (Losarton Potassium	-		50.00		50.00
		19	CHPB			30.00	4.5	30.00
			Sulphamethox y Pyrizine			10.00		10.00 200.0 0
		21	5 NSA			200.0		
		22	Noveldamine	7		240.0	-	240.0 0
		23	NND			20.00		20.00
		24	CBT	-		15.00	3-31	15.00
		25	HCS			25.00		25.00
		Tot	al	58.99	707.88	1241. 135.9 00 2	135.9 2	2050
		BY	PRODUCTS					
		23	Spent Caustic Lye 14%	-	7	800 TPA	-	800 TPA
		24	Spent Azide Solution (10-15%)	-	-	1296 TPA	-	1296 TPA
		25	Spent Sodium Sulphide Solution	-	-	1344 TPA		1344 TPA
6	Process details / manufacturing details	S. N o.	Product		Process Des	scription		
			Para Hydroxy Phenyl Acetar		The process involves Amidation reaction of PHAP in presence of Sulfur, Ammonia and IPA. After recovery of solvent and filter to get PHPA crude.Purification of PHPA Crude by using Acetic Acid, Carbon, and Hydrose get wet pure material which is to be			

n sansa sasa sana

77		dried for PHPA Pure.
	Hydroxynovaaldia mine (HNDA)	The process involves conversion of ABL into Chloro Pentanone by using Hydrochloric Acid. Then Chloropentanone is converted into Ketal derivative by using Mono Ethylene Glycol & Para Toluene Sulphonic Acid. Then Ketal derivative is condensed with Ethyl Amino Ethanol to give condensed product which is deketalized in presence of Hydrochloric Acid followed by reductive Ammination with Ammonia Raney Nickel catalyst & Hydrogen to give HNDA Crude which is purified by fractional distillation.
3	Thioephene – 2 – Aldehyde (T2A)	Conversion of Thiophene to Thiophene-2-Aldehyde in presence of DMF and Phosphrous Oxichloride. Reaction mass quench in water and neutralize with caustic lye to get the T2A Crude which is to be further distil for Thiophene-2-Aldehyde pure material.
4	2-Mercapto-5 Methoxy Benzimidizole (MMBI)	This Process involves Reduction Of 4 MNA in presence of Sodium Hydrosulfide solution and followed by addition of 1 Octanol and CS2. Resulting MMBI Crude. Purification of MMBI in presence of D.M. Water, Sodium Hydroxide, and decolourise with carbon and precipitation with HCl, CP. Repeat the same process for further purification and precipitated with Ethyl Acetate. Dry the material to get MMBI pure.
5	6-Methoxy-8- Amino Quionoline (ROBO)	The reduction of Robo -2 to Robo -3 is carried out under pressure in ethyl acetate & in presence of catalyst Raney Nickel BY Using Hydrogen Gas. After hydrogenation filtration is carried out & Ethyl Acetate recovery is carried out. After recovery will get the organic mass as ROBO-3.
6	3-Methyl	Conversion of Thiophene to

77**1**.

	Thioephene- 2Aldehyde (3MT2A)	3Methyl Thiophene-2-Aldehyde in presence of DMF and Phosphrous Oxichloride. Reaction mass quench in water and neutralize with caustic lye to get the 3MT2A Crude which is to be further distilled for 3Methyl Thiophene-2-Aldehyde pure material.
7	6-Fluro Terta Hydro Quinoline (6FTQ)	4-fluro Aniline on condensation with Croton aldehyde gives fluro quinoline. Fluro quinoline on reduction in presence of Palladium carbon gets 6-fluro tetrahydroquinoline crude. Which on fraction distillation gets 6-fluro tetra hydro quinoline pure
8	MEP	This process involves methylation of 2 Phenyl Ethanol by using DMS gets 2 Methoxy Ethyl Benzene. 2 Methyoxy Ethyl Benzene further carried out nitration in presence of sulphuric acid and nitric acid with used Nitro compound. Reduction of Nitro compound by using Raney Nickel and hydrogen which gives Amino compound. Amino compound further carried out Diazotization and hydrolysis gives us MEP crude which is further fraction distilled gives MEP Pure.
9	Etodolac	7-Ethyl tryptophol on condensation with Methyl-3-oxopentanoate in Methanol in presence of Sulphuric acid as a catalyst gives Methyl ester of Etodolac (ETDE). ETDE on hydrolysis with alkaline water gives Etodolac.
10	Flumequine	This process involves condensation of 6-FTQ with EMME 2 form acrylate further it is hydrolyzed in presence of water with polyphosphoric acid to produce crude flumequine which is further purified in methanol to from pure Flumequine
	Clopidogrel (CLP-II)	This process involves Bromination of OCPAA in presence of EDC, Phosphorous Trichloride, bromine, Methanol,

		MDC and followed by washing of Sodium Meta Bi sulphite. Followed by EDC recovery to get CLP 1 – B. Condensation 2 Thiophene Ethylamine to CLP 1-T in presence of EDC, Paraformadehyde & mixture of DMF + HCL gives CLP 1 – T. Condensation of CLP 1-B & CLP-1 T in presenc of Sulfuric acid, acetone and EDC gives us CLP-II.
12	Losarton Base	This process involves condensation reaction of Intermediate 1st to Losartan Base crude in presence of Toluene, Sodium Azide, Triethyl Amine HCl, and followed by Hydrolysis by using Caustic solution. Organic mass which contain losartan Base which is further decolorised by using carbon and further precipitated with HCl to get the losartan Base crude. Purification of Losartan Base crude is carried out by water as well as IPA followed by drying to get Losartan Base Pure material.
13	Methyl Keto Indole	This process involves condensation reaction of 1,3,Cyclohexane Dione and Phenyl Hydrazine Hydrochloride, Methanol, D.M.Water followed by filtration and wash with water till PH neutral and dry the material gets MKI crude. Fisher Indole synthesis of Phenyl Hydrazone is carried out in presence of Acetic Acid and Zinc Chloride. Methylation of Keto Indole to Methyl Keto Indole crude in presence of Acetone, NaOH flakes and DMS. Purification of MKI is carried out by using Toluene.
14	Di Benzo Thiazepine	2-nitro-di-phenyl sulphide on reduction with hydrogen and raney nickel gives amino di phenyl sulphide (ADS). This amino di phenyl sulphide (ADS) on condensation with phenyl chloro formate gives phenyl amino di phenyl sulphide

15	T-Butyl Chloro Acetate	(PADS). This phenyl amino di phenyl sulphide on cyclisation with poly phosphoric acid gives Dibenzothiazepine. Sulfonation of t-Butanol in presence of Mono Chloro Acetic Acid & MDC followed by water washing and after distillation gets T-BUTYL CHLORO ACETATE.
16	DSP	Conversion of Bon Acid into Disodium Pamoate in presence of Caustic soda flakes, Para Formaldehyde.
17	THP	This process involves condensation of Methyl Amino Propyl Amine in presence of Acetonitrile and catalyst Hariocat to get THP (Tetra Hydro Peridine)
18	Losarton Potassium	Losartan Base dissolved in Methanol & KOH solution followed by charcolsation & crystallization in Acetone gives Losartan Potassium.
19	4-Chloro-4- Hydroxybenzophe none (CHBP)	4-Chloro benzoyl chloride when reacts with anisole under friedel craft acylation condition gives CMBP, which on insitu demethylation with anhydrous aluminum chloride gives CHBP.
20	Sulphamethoxypyr azine	The process for the synthesis of sulphamethoxy pyrazine is comprises of two steps, first being the coupling of 2,3-dichloro pyrazine with sulphanilamide in the presence of acid binding agent, to produce the intermediate 4-Amino-N-(3-chloro-pyrazinyl)benezene sulphonamide (SCP), which is further reacted with potassium hydroxide and methanol to give the final product Sulphamethoxypyrazine.
21	5-Nitro Salicylic Acid (5-NSA)	The synthesis of 5-NSA involves Nitration of salicylic acid in aqueous media, followed by purification in Aq. MEOH to isolate 3-NSA isomer which is further purified by MEOH to obtain 5-NSA pure.

		22	Novaldia (NDA)	fi is s A to N c F C T t t a a a	The synthesis rom ABL in a converted to the synthesis and the converted to the converted to the hydrolysis and fination in ammonia, hy is as catalysis of the converted to the converted to the hydrolysis. It and fination in ammonia, hy is as catalysis of fractional	volves 5 steps to CP by addition of the color and the colo	Eps. ABL Shoth stillation with d Surther CP L Ketal by yl amine. NK by group with onverted ctive and raney A prepared
	Rain Water Harvesting (RWH)	• Size KLD • Loc • Size	and no. of the ation of the ati	Ground water of RWH tanked tan	(s) and quan (s) – Near Ut ind Quantity	tity – 35 X2 tility Buildi → Not con	ng sidered
18	Total Water Requirement	Total Fresh Use of Proce Boili Cool Othe	water recommend water - 4 of the water ess - 105 ong Water ing - 176 rs water for wate	quirement: :75 KLPD & S er: KLPD – 134 KLPD	Source: MID		
19	Storm water drainage	• Nat	ural water	r drainage patt - 0.75 x 1.2	ern – Towar	ds Kal rive	r
20	Sewage generation and treatment	• Am	ount of se	ewage generat atment for the he STP (CMD	ion – 25 KL sewage – Bi	iological tre	
21	Effluent characteristic	Para (pH CO)	ameters , BOD, D etc) D	Effluent star (Pl mention specific star 100	ndard limit industry	Propose d Limit 100	MPCB Consent Yes
		PH	D	250 5.5 to 9.0		250 5.5 to 9.0	

22	ETP details	KLPI Capa & Ca Amor Amor emery at MI Mem	D + 45 KLF city of the I pacity of M unt of treate unt of wate gency or br IDC, Mahae bership of t	PD) ETP (CMD) IEE – 75 KL ed effluent re r send to the eakdown eff I area for fun the CETP (If	– 120 I PD (fo ecycled CETP luent w ther tre	CLPD (for low r high TDS / C (CMD): 153 K (CMD): In case will be sent to C eatment and discept if yes then a control of the co	TDS / COD) OD) KLPD e of extreme ETP located posal. attach the		
23	Note on ETP technology to be used	The industrial waste water (Low COD effluent) will be sent to the double stage activated sludge process type effluent treatment plant followed by RO Plant for treatment and the treated water will be utilized within plant for Plant Utilities. Similarly High COD effluent along with RO Reject will be sent to solvent stripper and multi effect evaporator for treatment and treated effluent will be recycled back. TSDF Site for which unit got membership.							
24	Disposal of the ETP	TSDI	F Site for w	hich unit go	t memb	ership.			
25	sludge (If applicable) 25 Solid waste Management	S. N	Source		Qty (TP M)	Form (Sludge/Dry / Slurry etc.)	Compositi		
		1	Raw Wate Treatment		1		-		
		2 ETP 3 Process			100	(-	Organic Organic		
		5	Spent Cat Oily Slud		8.33 0.20 8	oil	Organic Organic		
		6	Others lik waste, Wa Specify)	e Battery iste etc (Pl.	10 Nos.	Dry	5		
		mater and process	rials or hear proposed prection, Stora VTSDF-Tall t are the pos- imum recov- ible users of nical solid valued of dispo- nazardous co- fully handle harge of the e shall be se	vy metals the ecautionary age, Transpooja ssibilities of very & recyc f solid waste to TSI sal of solid whemicals and in a closed se chemicals	en proventation recover ling is less to the state of the system into the for land	and Disposal a ry and recyclin being/will be d at Taloja or cer le organic solv i, thereby prev e air. Finally H d disposal or ir	isposal data it g of wastes? one. ment plants. ents are enting any lazardous		
26	Atmospheric Emissions (Flue gas characteristics SPM, SO2, NOx, CO, etc.)	Sr. No.		Source of Emission Boiler		ion rate			

100574		2	SO ₂		Boiler	1.31			
		3	NOx		Boiler	3.8			
27		Plant & uni		Stac No.	kHeight ground (m)	level I	nternal Diamete Top)(m	r Ex	mp. of haust Gases
		Boiler		1	30.00		0.75 M		0 Degree ntigrade
	Existing and proposed	DG se	·t	1/2/2/2	8.75).27 M		
	activity). Please indicate the specific section to which the stack is	NH ₃	ber &	1	19.0		00 MM	f Ar	nbient
attached. e.g.: Process section, D.G. Set, Boiler, Power Plant, incinerator etc. Emission rate (kg/hr.) for each pollutant (SPM, SO2, NOx etc. should be specified		lp.	ollutant		Emiss	on Stand	ardPror	oosed Limit	MPCB Con
28	Emission Standard				tc)Limit			/Nm³)	(mg/Nm3)
			PM/TPI			150 mg/Nm ³		mg/Nm³	150 mg/Nm
		S)2		278 kg		278	kg/d	278 kg/d
		H	CL		35 mg	/Nm³	35 n	ng/Nm³	35 mg/Nm ³
		N	H3		50 PP		50 F	PPM	50 PPM
29	Ambient Air Quality Data		110 12.5 2	Star 100 60 µ 80 µ 80 µ	nissible idard µg/m3 µg/m3 µg/m3 µg/m3	Proposed (in μg/m 89.9 42.3 12.2 25.7			Remarks
100		CC		4 με	z/m3	0.72			
30 Details of Fuel to be used:	S r. N o	Fuel		Daily Consump (TPD/KI Existing	.D)	Calo rific valu e (Kca ls /kg)	% Ash	% Sulph ur	
		$\frac{1}{2}$	Napl	nt		-			
			ha						
		3	HSE)	50 Lit/d	50 Lit/d	102 70	0.02%	< 1%
		4	Fuel Oil		2.4 KL/I		100 00	0.1 %	3.5 %
		5	Coal		15.0 MT/D	Addit ional 5.0 MT/	560 0 to 620 0	15 to 20	%

		6	Lignite						
	* * *	7	Other (Pl. specify						
		** \$40 CM / 2 SA \$40 A	rce of fue le of tran		William St. 2007 Chile		site: Rs	, Road	
31	Energy	Power supply: Existing power requirement: 1220 KVA Proposed power requirement: 1000 KVA Total – 2220 KVA Source - Maharashtra State Electricity Development Corporation Ltd. (MSEDCL) DG sets: Number and capacity DG sets to be used (existing and proposed) Existing – 590 KVA & proposed - 610 KVA Details of the non-conventional renewable energy proposed to be used: Nil							
32	Green Belt Development	Num Exis	en belt ar aber and ting nos. oosed nos	specie 2500	es of tree				
		1.7	S. No		ntific N	Common Nan	ne		
			1 1 2 2 2 			a senegal		Kher	
		2 Azadirachta indica					Limdo		
			3		us Med			Butlimbo	
			4			tron phl	omidis	Arni	7/4 (1.54)
			5	Cocous Nucifera		Nariyal			
			6		mix re			Gulmohar	
			7		alyptus	<u> </u>		Nilgiri	
			8		s glom			Umbar	
			9		s hispi			Dhed Umbar	
			10		s relig			Peepal	
			11			indica		Keri	
		Number, size, age and species of trees to be cut, trees to be transplanted - Not any							
33	Details of Pollution Control Systems:	S. No			DESCRIPTION OF THE	ing pollu ol syster		Proposed to b installed	e
		i	Air		F14349 AH 20 KANGG	bers & anical D	ust	Scrubbers & Filter	Bag
		2	Water		ETP	& MEE		ETP, RO, ME STP	EE&
		3	Noise		acous	tic enclo	sures	acoustic enclo	sures
		4			Disposal with TSDF & Incinerator			Disposal with	

34	Environmental Management plan	Capital cost (With break up): Rs. 525 Lacs Recurring Cost (Rs. Lacs/annum): 79 Lacs/ Annum							
	Budgetary Allocation	S	Particular	Recurring cost per annum	Capita 1 cost				
		0							
		$\frac{3}{1}$	Air pollution control	0.5 lac	40.0 Lac				
		2	Water pollution control	40.0 Lac	438 Lac				
		3	Noise pollution control	0.3 lac	5.0 lac				
		4	Environmental monitoring & management	12 Lac	5.0 lac				
		5	Occupational Health	0.7 lac	5.0 lac				
		6	Green Belt	0.5 lac	2.0 lac				
		7 Solid waste management		25 Lac	30 Lac				
		8	Others (Pls Specify)		7				
		To	otal	79	525				
				lac/annum	Lacs				
		Fin De dat soo bee Por ide bee Co	sults & conclusions have been inconal EIA/EMP Report. tails of the secondary data collectiona) – Secondary data for 10 km radicio economic survey, list of flora are incorporated in Chapter III of Finantial hazard and mitigation measurable hazards along with their minen incorporated in Chapter VII of Finclusion of the EIA study – The survey of the sur	on (i.e. Source ar us has been colled ad fauna etc. and nal EIA/EMP Roures — The list of tigation measure inal EIA/EMP F mmary has been	nd year of ected like have eport. s have Report.				
36	Public hearing report (If public hearing conducted then submit the salient features)	No As end withea (C 3);	corporated in Chapter XI of Final Extra Applicable per MoEFCC, O.M. dated 10 th Declosed as Annexure - 2), "projects of thin Industrial Estate or Parks will laring." Since, our project falls in Nopy of Gazette Notification of area thus, the above O.M. is applicable hancement project.	cember, 2014 (Cor activity or united be exempted from the otified Industrial enclosed as Anited Enclosed as Anited Enclosed as Anited Enclosed as Anited Enclosed Enc	Copy ts located m Public l Area nexure -				
37	Air pollution, water pollution issues in the		such issue identified						

38. Storage of chemicals (inflammable/explosive/hazardous/toxic substances) STORAGE FACILITIES (RAW MATERIALS)

DIVINGEIACIE	TITED (IXXII IIXXIIXX	LALID)	en variable en en begravet in de en de en	in an alta contraction and the state of the
Particulars	UOM	Type of	R.M. Ware Hou	se Capacity
(Raw Materials		storage	Existing I	Proposed

			(MT)	(MT)
Acetonitrile	Kgs.	BAG	0.5	1
Acrylamide	Kgs.	BAG	1	1
Aceto Butyrolactone	Kgs.	DRUM	18	25
Aluminium Chloride	Kgs.	DRUM	2	3
Anisole	Kgs.	DRUM	1	1
Crotonaldehyde	Kgs.	DRUM	5	7
2,3-Dichloro Pyrazine	Kgs.	DRUM	2	3
Dibromo Dimethyl Hydantion	Kgs.	DRUM	2	3
7-Ethyl Tryptophol	Kgs.	DRUM	2	3
7-Ethyl Tryptophol (7-ETP) [For ED3-A batches)	Kgs.	DRUM	4	6
4-Fluoro Aniline	Kgs.	DRUM	2	3
KETO INDOLE (KI)	Kgs.	· F/D	0.5	1
Methyl-3- Oxopentanoate	Kgs.	DRUM	5	7
4-Methoxy-2-Nitroaniline	Kgs.	BAG	9	13
Methyl-3- Oxopentanoate [Non DMF]	Kgs.	DRUM	3	4
2-Ethylamino-Ethanol	Kgs.	DRUM	12	17
Monochlorobenzene	Kgs.	DRUM	1.5	2
Para hydroxy Aceto Phenone(PHAP)	Kgs.	SACK	70	98
Phenyl Hydrazine Hydrochloride	Kgs.	BAG	1	1
Salicylic Acid I.P.	Kgs.	BAG	5	7
Sodium Azide	Kgs.	F/D	18	25
Azobisisobutyl isonitrile(AIBN)	Kgs.	BOX	0.5	1
Hariocat	Kgs.	DRUM	0.1	0
5% Paladium in Charcoal Catalyst (Type 487) / RD-9205	Kgs.	DRUM	0.02	0
Activated Alloy Catalyst - KALCAT1961 (Raney	Kgs.	DRUM	1.5	2
Tetra Butyl Ammonium Bromide	Kgs.	F/D	0.5	1
Activated Charcoal - BW 280 / MM-WC	Kgs.	BAG	0.3	0
Activated Carbon - Grade 55 NS / MM-WC	Kgs.	BAG	10	14
ACTIVATED CARBON [PURCARB SC 40 / MMW SP 1]	Kgs.	BAG	5	7
Carbon Di-Sulphide	Kgs.	DRUM	1	1
HYFLOW (PURIFIED SILICONS-CELITE 545)	Kgs.	BAG	2	3
Diethylamine	Kgs.	DRUM	1.5	2
Dimethyl Sulphate (D.M.S.)	Kgs.	DRUM	1	
Disodium EDTA	Kgs.	BOTTEL	0.01	o o
POTASSIUM HYDROXIDE FLAKES	Kgs.	BAG	1.5	2
Potassium Iodide	Kgs.	DRUM	0.1	0
Para Toulene Sulphonic Acid	Kgs.	BAG	0.3	0
Sodium Bi-Carbonate	Kgs.	BAG	0.5	$\frac{1}{1}$
Sodium hydro sulphite(Anhydrous)	Kgs.	TIN DRUM	1	i
SODIUM BOROHYDRIDE	Kgs.	TIN DRUM	0.5	i

Sodium Nitrite	Kgs.	BAG	10	14
SODIUM METABISULPHITE	Kgs.	BAG	1.5	2
Sodium Hydrogen Sulphide 30%	Kgs.	DRUM	5	7
Sodium Iodide	Kgs.	DRUM	0.3	0
SODIUM BOROHYDRIDE [NON DMF]	Kgs.	TIN DRUM	2	3
SODIUM HYPOCHLORITE SOLUTION FOR NND	Kgs.	DRUM	10	14
SALT REFINED	Kgs.	BAG	5	7
SULPHUR	Kgs.	BAG	20	28
Triethylamine	Kgs.	DRUM	1	$\frac{1}{1}$
TRIETHYLAMINE HYDROCHLORIDE(FOR LOSARTAN POTA	Kgs.	BAG	12	17
Ammonia Gas	Kgs.	TONNER	3.2	4
Hydrogen Gas	CUM3	CYL	0.57	1
4-AMINO-N-(3- CHLOROPYRAZYNYLE) BENZENE SULFONAMIDE [SULPHOMETHOZYPYRAZINE]	Kgs.	F/D	1.5	2
BCFI (2-Butyl-4-Chloro-5-Formyl Imidazole)	Kgs.	F/D	3	4
BCFI (2-Butyl-4-Chloro-5-Formyl Imidazole) [ND]	Kgs.	F/D	10	14
4-CHLOROBENZOYL CHLORIDE	Kgs.	F/D	1	1
INTERMEDIATE - I (ND) [4¿- {{2-butyl-4-chloro-5- (hydroxymethyl)-1H imidazol-1- yl]methyl}biphenyl-2-Ca	Kgs.	BAG	10	14
2-CYANO-4-BROMOMETHYL- BIPHENYL [OTBB]	Kgs.	BAG	3	4
2-CYANO-4'METHYL- BIPHENYL (OTBN) [NON DMF]	Kgs.	F/D	12	17
SODIUM HYDROXIDE	Kgs.	BAG	20	28
Nitric Acid	Kgs.	CARBOY	5	7
Sulphuric Acid (Commercial grade)	Kgs.	TANK	20	28
THIOGLYCOLIC ACID	Ltrs.	BOTTEL	2	3
RECD. TRIETHYLAMINE HYDROCHLORIDE FOR LOSARTAN BASE	Kgs.	BAG	20	28
ACTIVATED CARBON -GRADE AC-ULTIMA	Kgs.	BAG	0.2	0
CAUSTIC LYE	Kgs.	TANK	20	28
Hydrochloric Acid	Kgs.	TANK	15	21
HYDROCHLORIC ACID [CP GRADE : NLT 35%]	Kgs.	TANK	15	21
Liquor Ammonia	Kgs.	DRUM	2.2	3
Sulphuric Acid (C.P.Grade)	Kgs.	CARBOY	2	3

Acetic Acid	Kgs.	CARBOY	5	7
Acetone	Kgs.	TANK	16	22
Cyclohexane	Kgs.	TANK	16	22
Ethyl Acetate	Kgs.	TANK	11.4	16
Isopropyl Alcohol	Kgs.	TANK	18	25
Methanol	Kgs.	TANK	18	25
METHYLENE CHLORIDE / DICHLOROMETHANE	Kgs.	TANK	18	25
MONO ETHYLENE GLYCOL	Kgs.	DRUM	10	14
1-OCTANOL	Ltrs.	BOTTEL	0.05	0
TOLUENE	Kgs.	TANK	16	22
TOLUENE	Kgs.	TANK	16	22
1,3 CYCLOHEXANEDIONE	Kgs.	BOX	0.5	1

STORAGE FACILITIES (PRODUCTS)

S.	PARTICULARS	TYPE OF	BSR CAPACITY IN MT.	
NO.	. (Products Finished Goods)	STORAGE	EXISTING	PROPOSED
1	PHPA	BAG	30	40
2	LOSARTAN BASE	BAG	10	30
3	ETODOLAC	DRUM	7	10
4	LOSARTAN POTASSIUM	DRUM	2	5
5	MMBI	DRUM	9	9
6	HNDA	DRUM	6	20
7	MKI	DRUM	0.5	0.5
8	SMP	DRUM	0.5	0.5
9	6 FTQ	DRUM	2	2
10	5NSA	DRUM	0.2	0.2
11	NDA	DRUM	0.3	10

3. The proposal has been considered by SEIAA in its 99th meeting & decided to accord environmental clearance to the said project under the provisions of Environment Impact Assessment Notification, 2006 subject to implementation of the following terms and conditions:

General Conditions for Pre-construction phase:-

- (i) PP to achieve Zero Liquid Discharge (ZLD) by incorporating Multiple Effect Evaporator which shall have an independent energy meter (delinked from ETP energy meter).
- (ii) No additional land shall be used /acquired for any activity of the project without obtaining proper permission.
- (iii) This environmental clearance is issued subject to implementation of online air monitoring facility equipment.
- (iv) PP to provide STP having capacity 25 KLD next to ETP.
- (v) All internal roads shall be of 6 M width.
- (vi) For controlling fugitive natural dust, regular sprinkling of water & wind shields at appropriate distances in vulnerable areas of the plant shall be ensured.
- (vii) Proper Housekeeping programmers shall be implemented.
- (viii) In the event of the failure of any pollution control system adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieve.

- (ix) A stack of adequate height based on DG set capacity shall be provided for control and dispersion of pollutant from DG set.(If applicable)
- (x) A detailed scheme for rainwater harvesting shall be prepared and implemented to recharge ground water.
- (xi) Arrangement shall be made that effluent and storm water does not get mixed.
- (xii) Periodic monitoring of ground water shall be undertaken and results analyzed to ascertain any change in the quality of water. Results shall be regularly submitted to the Maharashtra Pollution Control Board.
- (xiii) Noise level shall be maintained as per standards. For people working in the high noise area, requisite personal protective equipment like earplugs etc. shall be provided.
- (xiv) The overall noise levels in and around the plant are shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures, etc. on all sources of noise generation. The ambient noise levels shall confirm to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989.
- (xv) Green belt shall be developed & maintained around the plant periphery. Green Belt Development shall be carried out considering CPCB guidelines including selection of plant species and in consultation with the local DFO/ Agriculture Dept.
- (xvi) Adequate safety measures shall be provided to limit the risk zone within the plant boundary, in case of an accident. Leak detection devices shall also be installed at strategic places for early detection and warning.
- (xvii) Occupational health surveillance of the workers shall be done on a regular basis and record maintained as per Factories Act.
- (xviii) The company shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling.
- (xix) The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Waste (Management and Handling) Rules, 2003 (amended). Authorization from the MPCB shall be obtained for collections/treatment/storage/disposal of hazardous wastes.
- (xx) The company shall undertake following Waste Minimization Measures:
 - Metering of quantities of active ingredients to minimize waste.
 - •Reuse of by- products from the process as raw materials or as raw material substitutes in other process.
 - Maximizing Recoveries.
 - Use of automated material transfer system to minimize spillage.
- (xxi) Regular mock drills for the on-site emergency management plan shall be carried out. Implementation of changes / improvements required, if any, in the on-site management plan shall be ensured.
- (xxii) A separate environment management cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards.
- (xxiii) Separate funds shall be allocated for implementation of environmental protection measures/EMP along with item-wise breaks-up. These cost shall be included as part of the project cost. The funds earmarked for the environment protection measures shall not be diverted for other purposes and year-wise expenditure should reported to the MPCB & this department

- (xxiv) The project management shall advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the marathi language of the local concerned within seven days of issue of this letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the Maharashtra Pollution Control Board and may also be seen at Website at http://ec.maharashtra.gov.in
- (xxv) Project management should submit half yearly compliance reports in respect of the stipulated prior environment clearance terms and conditions in hard & soft copies to the MPCB & this department, on 1st June & 1st December of each calendar year.
- (xxvi) A copy of the clearance letter shall be sent by proponent to the concerned Municipal Corporation and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the Company by the proponent.
- (xxvii) The proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; SPM, RSPM. SO₂, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the project shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.
- (xxviii)The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as well as by e-mail) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB.
- (xxix) The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail.
- 4. The environmental clearance is being issued without prejudice to the action initiated under EP Act or any court case pending in the court of law and it does not mean that project proponent has not violated any environmental laws in the past and whatever decision under EP Act or of the Hon'ble court will be binding on the project proponent. Hence this clearance does not give immunity to the project proponent in the case filed against him, if any or action initiated under EP Act.
- 5. The Environment department reserves the right to revoke the clearance if conditions stipulated are not implemented to the satisfaction of the department or for that matter, for any other administrative reason.
- 6. Validity of Environment Clearance: The environmental clearance accorded shall be valid for a period of 7 years as per MoEF & CC Notification dated 29th April, 2015 to start of production operations.

- 7. In case of any deviation or alteration in the project proposed from those submitted to this department for clearance, a fresh reference should be made to the department to assess the adequacy of the condition(s) imposed and to incorporate additional environmental protection measures required, if any.
- 8. The above stipulations would be enforced among others under the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and rules there under, Hazardous Wastes (Management and Handling) Rules, 1989 and its amendments, the public Liability Insurance Act, 1991 and its amendments.
- 9. Any appeal against this environmental clearance shall lie with the National Green Tribunal (Western Zone Bench, Pune), New Administrative Building, 1st Floor, D-, Wing, Opposite Council Hall, Pune, if preferred, within 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.

(S. M Gavai) Member Secretary, SEIAA

Copy to:

- 1. Shri T. C. Benjamin, IAS (Retired), Chairman, SEAC-I, 602, PECAN, Marigold, Behind Gold Adlabs, Kalyani Nagar, Pune 411014.
- 2. Additional Secretary, MoEF & CC, Indira Paryavaran Bhavan, Jorbagh Road, Aliganj, New Delhi-110003.
- 3. Member Secretary, Maharashtra Pollution Control Board, with request to display a copy of the clearance.
- 4. The CCF, Regional Office, Ministry of Environment and Forest (Regional Office, Western Region, Kendriya Paryavaran Bhavan, Link Road No- 3, E-5, Ravi-Shankar Nagar, Bhopal- 462 016). (MP).
- 5. Regional Office, MPCB, Raigad.
- 6. Collector, Raigad
- 7. IA- Division, Monitoring Cell, MoEF & CC, Indira Paryavaran Bhavan, Jorbagh Road, Aliganj, New Delhi-110003.

)

8. Select file (TC-3)

(EC uploaded on